Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Bone ; 187: 117175, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917963

ABSTRACT

While previous studies have demonstrated the role of ubiquitin-conjugating enzyme 2C (UBE2C) in promoting ß-cell proliferation and cancer cell lineage expansion, its specific function and mechanism in bone marrow mesenchymal stem/stromal cells (BMSCs) growth and differentiation remain poorly understood. Our findings indicate that mice with conditional Ube2c deletions in BMSCs and osteoblasts exhibit reduced skeletal bone mass and impaired bone repair. A significant reduction in the proliferative capacity of BMSCs was observed in conditional Ube2c knockout mice, with no effect on apoptosis. Additionally, conditional Ube2c knockout mice exhibited enhanced osteoclastic activity and reduced osteogenic differentiation. Furthermore, human BMSCs with stable UBE2C knockdown exhibited diminished capacity for osteogenic differentiation. Mechanistically, we discovered that UBE2C binds to and stabilizes SMAD1/5 protein expression levels. Interestingly, UBE2C's role in regulating osteogenic differentiation and SMAD1/5 expression levels appears to be independent of its enzymatic activity. Notably, UBE2C regulates osteogenic differentiation through SMAD1/5 signaling. In conclusion, our findings underscore the pivotal role of UBE2C in bone formation, emphasizing its contribution to enhanced osteogenic differentiation through the stabilization of SMAD1/5. These results propose UBE2C as a promising target for BMSC-based bone regeneration.

2.
Biochem Pharmacol ; 224: 116202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615917

ABSTRACT

As bone-resorbing cells rich in mitochondria, osteoclasts require high iron uptake to promote mitochondrial biogenesis and maintain a high-energy metabolic state for active bone resorption. Given that abnormal osteoclast formation and activation leads to imbalanced bone remodeling and osteolytic bone loss, osteoclasts may be crucial targets for treating osteolytic diseases such as periodontitis. Isobavachin (IBA), a natural flavonoid compound, has been confirmed to be an inhibitor of receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation from bone marrow-derived macrophages (BMMs). However, its effects on periodontitis-induced bone loss and the potential mechanism of its anti-osteoclastogenesis effect remain unclear. Our study demonstrated that IBA suppressed RANKL-induced osteoclastogenesis in BMMs and RAW264.7 cells and inhibited osteoclast-mediated bone resorption in vitro. Transcriptomic analysis indicated that iron homeostasis and reactive oxygen species (ROS) metabolic process were enriched among the differentially expressed genes following IBA treatment. IBA exerted its anti-osteoclastogenesis effect by inhibiting iron accumulation in osteoclasts. Mechanistically, IBA attenuated iron accumulation in RANKL-induced osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway to upregulate ferroportin1 (Fpn1) expression and promote Fpn1-mediated intracellular iron efflux. We also found that IBA inhibited mitochondrial biogenesis and function, and reduced RANKL-induced ROS generation in osteoclasts. Furthermore, IBA attenuated periodontitis-induced bone loss by reducing osteoclastogenesis in vivo. Overall, these results suggest that IBA may serve as a promising therapeutic strategy for bone diseases characterized by osteoclastic bone resorption.


Subject(s)
Iron , Mice, Inbred C57BL , Mitochondria , Organelle Biogenesis , Osteoclasts , Periodontitis , Animals , Mice , Iron/metabolism , RAW 264.7 Cells , Periodontitis/drug therapy , Periodontitis/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Osteogenesis/drug effects , Male , Bone Resorption/metabolism , Bone Resorption/drug therapy , Bone Resorption/prevention & control , Bone Resorption/etiology , Alveolar Bone Loss/metabolism , Alveolar Bone Loss/drug therapy , Alveolar Bone Loss/prevention & control , Alveolar Bone Loss/etiology , Alveolar Bone Loss/pathology
3.
Adv Healthc Mater ; 13(7): e2302877, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38041691

ABSTRACT

The postoperative periodontal wound is in a complex physiological environment; the bacteria accumulation, the saliva stimulation, and the food residues retention will aggravate the wound deterioration. Commercial periodontal dressings have been widely used for postoperative periodontal treatment, and there still exists some problems, such as poor biocompatibility, weak adhesion, insufficient antibacterial, and anti-inflammatory properties. In this study, a chitosan-gallic acid graft copolymer (CS-GA) is synthesized as a potential periodontal dressing hydrogel. CS-GA possesses high swelling rate, adjustable degradability, self-healing ability, biocompatibility, strong adhesion ability, high mechanical properties and toughness. Furthermore, CS-GA has good scavenging ability for ·OH, O2 - , and 1 O2. And CS-GA has good inhibition effect on different bacterial through bacterial membranes damage. CS-GA can stop bleeding in a short time and adsorb erythrocytes to form physical blood clots to enhance the hemostatic performance. In addition, CS-GA can reduce inflammatory factors expressions, increase collagen fibers deposition, and neovascularization to promote wounds healing, which makes it as a potential periodontal dressing for postoperative tissue restoration.


Subject(s)
Chitosan , Humans , Chitosan/chemistry , Gallic Acid/pharmacology , Periodontal Dressings , Hydrogels/chemistry , Wound Healing , Polymers/pharmacology , Tissue Adhesions , Anti-Bacterial Agents/chemistry
4.
Adv Healthc Mater ; 13(7): e2302725, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38030141

ABSTRACT

In the context of bone regeneration, nanoparticles harboring osteogenic factors have emerged as pivotal agents for modulating the differentiation fate of stem cells. However, persistent challenges surrounding biocompatibility, loading efficiency, and precise targeting ability warrant innovative solution. In this study, a novel nanoparticle platform founded upon the zeolitic imidazolate framework-8 (ZIF-8) is introduced. This new design, CDC20@ZIF-8@eM-Apt, involves the envelopment of ZIF-8 within an erythrocyte membrane (eM) cloak, and is coupled with a targeting aptamer. ZIF-8, distinguished by its porosity, biocompatibility, and robust cargo transport capabilities, constitutes the core framework. Cell division cycle protein 20 homolog (CDC20) is illuminated as a new target in bone regeneration. The eM plays a dual role in maintaining nanoparticle stability and facilitating fusion with target cell membranes, while the aptamer orchestrates the specific recruitment of bone marrow mesenchymal stem cells (BMSCs) within bone defect sites. Significantly, CDC20@ZIF-8@eM-Apt amplifies osteogenic differentiation of BMSCs via the inhibition of NF-κB p65, and concurrently catalyzes bone regeneration in two bone defect models. Consequently, CDC20@ZIF-8@eM-Apt introduces a pioneering strategy for tackling bone defects and associated maladies, opening novel avenues in therapeutic intervention.


Subject(s)
Nanoparticles , Zeolites , Osteogenesis , Erythrocyte Membrane , Bone Regeneration/physiology
5.
Free Radic Biol Med ; 207: 48-62, 2023 10.
Article in English | MEDLINE | ID: mdl-37423561

ABSTRACT

BACKGROUND AND PURPOSE: Inflammatory disorders have been found to induce bone loss through sustained and persistent activation of osteoclast differentiation, leading to heightened bone resorption. The current pharmacological interventions for combating bone loss to harbor adverse effects or contraindications. There is a pressing need to identify drugs with fewer side effects. EXPERIMENTAL APPROACH: The effect and underlying mechanism of sulforaphene (LFS) on osteoclast differentiation were illustrated in vitro and in vivo with RANKL-induced Raw264.7 cell line osteoclastogenesis and lipopolysaccharide (LPS)-induced bone erosion model. KEY RESULTS: In this study, LFS has been shown to effectively impede the formation of mature osteoclasts induced from both Raw264.7 cell line and bone marrow macrophages (BMMs), mainly at the early stage. Further mechanistic investigations uncovered that LFS suppressed AKT phosphorylation. SC-79, a potent AKT activator, was found to reverse the inhibitory impact of LFS on osteoclast differentiation. Moreover, transcriptome sequencing analysis revealed that treatment with LFS led to a significant upregulation in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant-related genes. Then it's validated that LFS could promote NRF2 expression and nuclear translocation, as well as effectively resist oxidative stress. NRF2 knockdown reversed the suppression effect of LFS on osteoclast differentiation. In vivo experiments provide convincing evidence that LFS is protective against LPS-induced inflammatory osteolysis. CONCLUSION AND IMPLICATIONS: These well-grounded and promising findings suggest LFS as a promising agent to addressing oxidative-stress related diseases and bone loss disorders.


Subject(s)
Bone Resorption , Osteogenesis , Humans , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Differentiation , Osteoclasts/metabolism , Signal Transduction , Bone Resorption/chemically induced , Bone Resorption/drug therapy , Bone Resorption/genetics , RANK Ligand/genetics , RANK Ligand/pharmacology , NF-kappa B/metabolism
6.
Stem Cell Res Ther ; 13(1): 443, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056439

ABSTRACT

BACKGROUND: Bone is a rigid organ that provides physical protection and support to vital organs of the body. Bone loss disorders are commonly associated with increased bone marrow adipose tissue. Bone marrow mesenchymal stromal/stem cells (BMSCs) are multipotent progenitors that can differentiate into osteoblasts, adipocytes, and chondrocytes. Cell division cycle 20 (CDC20) is a co-activator of anaphase promoting complex/cyclosome (APC/C), and is required for ubiquitin ligase activity. Our previous study showed that CDC20 promoted the osteogenic commitment of BMSCs and Cdc20 conditional knockout mice suggested a decline in bone mass. In this study, we found that knockdown of CDC20 promoted adipogenic differentiation of BMSCs by modulating ß-catenin, which suggested a link between adipogenesis and osteogenesis. METHODS: Lentivirus containing a CDC20 shRNA was used for CDC20 knockdown in human BMSCs (hBMSCs). Primary mouse BMSCs (mBMSCs) were isolated from Cdc20f/f and Sp7-Cre;Cdc20f/f mice. Adipogenesis was examined using quantitative real-time reverse transcription PCR (qRT-PCR) and western blotting analysis of adipogenic regulators, Oil Red O staining, and transplantation into nude mice. CDC20 knockout efficiency was determined through immunochemistry, qRT-PCR, and western blotting of bone marrow. Accumulation of adiposity was measured through histology and staining of bone sections. Exploration of the molecular mechanism was determined through western blotting, Oil Red O staining, and qRT-PCR. RESULTS: CDC20 expression in hBMSCs was significantly decreased during adipogenic differentiation. CDC20 knockdown enhanced hBMSC adipogenic differentiation in vitro. CDC20-knockdown hBMSCs showed more adipose tissue-like constructs upon hematoxylin and eosin (H&E) and Oil Red O staining. Sp7-Cre;Cdc20f/f mice presented increased adipocytes in their bone marrow compared with the control mice. mBMSCs from Sp7-Cre;Cdc20f/f mice showed upregulated adipogenic differentiation. Knockdown of CDC20 led to decreased ß-catenin levels, and a ß-catenin pathway activator (lithium chloride) abolished the role of CDC20 in BMSC adipogenic differentiation. CONCLUSIONS: Our findings showed that CDC20 knockdown enhanced adipogenesis of hBMSC and mBMSCs adipogenesis in vitro and in vivo. CDC20 regulates both adipogenesis and osteogenesis of BMSCs, and might lead to the development of new therapeutic targets for "fatty bone" and osteoporosis.


Subject(s)
Adipogenesis , Cdc20 Proteins/metabolism , Mesenchymal Stem Cells , Animals , Bone Marrow/metabolism , Bone Marrow Cells , Cdc20 Proteins/genetics , Cell Differentiation , Cells, Cultured , Humans , Mesenchymal Stem Cells/metabolism , Mice , Mice, Knockout , Mice, Nude , Osteogenesis/genetics , beta Catenin/genetics , beta Catenin/metabolism
7.
Tissue Cell ; 77: 101829, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35660272

ABSTRACT

Craniofacial bone defects cause significant problems to patients with harmful consequences. Mesenchymal stem cells (MSCs) can self-renew and exhibit multilineage differentiation, which could be applied to bone regeneration. However, craniofacial bone tissue MSCs have unique properties, differing in their characteristics to MSCs derived from long bones. CDC20 promotes osteogenic differentiation in long bones; however, its role in craniofacial bone tissues remains unknown. In this study, we found that Cdc20 conditional knockout in mice triggered distinctive cranial and mandibular bone loss. Moreover, the osteogenic differentiation potential of cranial suture-derived MSCs and mandibular bone marrow-derived MSCs was impaired in Cdc20 conditional knockout mice. The conditional knockout of Cdc20 impaired osteogenesis in craniofacial bones. Our findings provide new insights into craniofacial bone regeneration and the treatments of craniofacial bone-related diseases.


Subject(s)
Cdc20 Proteins/metabolism , Mesenchymal Stem Cells , Osteogenesis , Animals , Bone Regeneration , Cell Differentiation , Mice , Osteogenesis/genetics , Skull
8.
EMBO Rep ; 22(9): e52576, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34382737

ABSTRACT

The E3 ubiquitin ligase complex CDC20-activated anaphase-promoting complex/Cyclosome (APC/CCDC20 ) plays a critical role in governing mitotic progression by targeting key cell cycle regulators for degradation. Cell division cycle protein 20 homolog (CDC20), the co-activator of APC/C, is required for full ubiquitin ligase activity. In addition to its well-known cell cycle-related functions, we demonstrate that CDC20 plays an essential role in osteogenic commitment of bone marrow mesenchymal stromal/stem cells (BMSCs). Cdc20 conditional knockout mice exhibit decreased bone formation and impaired bone regeneration after injury. Mechanistically, we discovered a functional interaction between the WD40 domain of CDC20 and the DNA-binding domain of p65. Moreover, CDC20 promotes the ubiquitination and degradation of p65 in an APC11-dependent manner. More importantly, knockdown of p65 rescues the bone loss in Cdc20 conditional knockout mice. Our current work reveals a cell cycle-independent function of CDC20, establishes APC11CDC20 as a pivotal regulator for bone formation by governing the ubiquitination and degradation of p65, and may pave the way for treatment of bone-related diseases.


Subject(s)
Cell Cycle Proteins , Osteogenesis , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Animals , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Mice , Osteogenesis/genetics , Ubiquitination
9.
Stem Cell Res Ther ; 12(1): 383, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34233738

ABSTRACT

BACKGROUND: As a promising way to repair bone defect, bone tissue engineering has attracted a lot of attentions from researchers in recent years. Searching for new molecular target to modify the seed cells and enhance their osteogenesis capacity is one of the hot topics in this field. As a member of aldo-keto reductase family, aldo-keto reductase family 1 member C1 (AKR1C1) is reported to associate with various tumors. However, whether AKR1C1 takes part in regulating differentiation of adipose-derived mesenchymal stromal/stem cells (ASCs) and its relationship with progesterone receptor (PGR) remain unclear. METHODS: Lost-and-gain-of-function experiments were performed using knockdown and overexpression of AKR1C1 to identify its role in regulating osteogenic and adipogenic differentiation of hASCs in vitro. Heterotypic bone and adipose tissue formation assay in nude mice were used to conduct the in vivo experiment. Plasmid and siRNA of PGR, as well as western blot, were used to clarify the mechanism AKR1C1 regulating osteogenesis. RESULTS: Our results demonstrated that AKR1C1 acted as a negative regulator of osteogenesis and a positive regulator of adipogenesis of hASCs via its enzyme activity both in vitro and in vivo. Mechanistically, PGR mediated the regulation of AKR1C1 on osteogenesis. CONCLUSIONS: Collectively, our study suggested that AKR1C1 could serve as a regulator of osteogenic differentiation via targeting PGR and be used as a new molecular target for ASCs modification in bone tissue engineering.


Subject(s)
20-Hydroxysteroid Dehydrogenases/genetics , Osteogenesis , Receptors, Progesterone , Stem Cells/cytology , Adipose Tissue/cytology , Aldo-Keto Reductases/genetics , Animals , Cell Differentiation , Cells, Cultured , Humans , Mice , Mice, Nude
10.
Stem Cells ; 39(10): 1395-1409, 2021 10.
Article in English | MEDLINE | ID: mdl-34169608

ABSTRACT

Dual-specificity phosphatases (DUSPs) are defined by their capability to dephosphorylate both phosphoserine/phosphothreonine (pSer/pThr) and phosphotyrosine (pTyr). DUSP5, a member of DUSPs superfamily, is located in the nucleus and plays crucially regulatory roles in the signaling pathway transduction. In our present study, we discover that DUSP5 significantly promotes osteogenic differentiation of mesenchymal stromal cells (MSCs) by activating SMAD1 signaling pathway. Mechanistically, DUSP5 physically interacts with the phosphatase domain of small C-terminal phosphatase 1/2 (SCP1/2, SMAD1 phosphatases) by the linker region. In addition, we further confirm that DUSP5 activates SMAD1 signaling through a SCP1/2-dependent manner. Specifically, DUSP5 attenuates the SCP1/2-SMAD1 interaction by competitively binding to SCP1/2, which is responsible for the SMAD1 dephosphorylation, and thus results in the activation of SMAD1 signaling. Importantly, DUSP5 expression in mouse bone marrow MSCs is significantly reduced in ovariectomized (OVX) mice in which osteogenesis is highly passive, and overexpression of Dusp5 via tail vein injection reverses the bone loss of OVX mice efficiently. Collectively, this work demonstrates that the linker region of DUSP5 maybe a novel chemically modifiable target for controlling MSCs fate choices and for osteoporosis treatment.


Subject(s)
Dual-Specificity Phosphatases , Osteogenesis , Smad1 Protein , Animals , Carrier Proteins , Cell Differentiation , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Mice , Phosphoprotein Phosphatases , Phosphorylation , Signal Transduction , Smad1 Protein/genetics , Smad1 Protein/metabolism
11.
J Cell Physiol ; 235(2): 909-919, 2020 02.
Article in English | MEDLINE | ID: mdl-31241766

ABSTRACT

MicroRNAs are a group of endogenous regulators that participate in several cellular physiological processes. However, the role of miR-137 in the osteogenic differentiation of human adipose-derived stem cells (hASCs) has not been reported. This study verified a general downward trend in miR-137 expression during the osteogenic differentiation of hASCs. MiR-137 knockdown promoted the osteogenesis of hASCs in vitro and in vivo. Mechanistically, inhibition of miR-137 activated the bone morphogenetic protein 2 (BMP2)-mothers against the decapentaplegic homolog 4 (SMAD4) pathway, whereas repressed lysine-specific histone demethylase 1 (LSD1), which was confirmed as a negative regulator of osteogenesis in our previous studies. Furthermore, LSD1 knockdown enhanced the expression of BMP2 and SMAD4, suggesting the coordination of LSD1 in the osteogenic regulation of miR-137. This study indicated that miR-137 negatively regulated the osteogenic differentiation of hASCs via the LSD1/BMP2/SMAD4 signaling network, revealing a new potential therapeutic target of hASC-based bone tissue engineering.


Subject(s)
Adipose Tissue/cytology , Mesenchymal Stem Cells/cytology , MicroRNAs/genetics , Osteogenesis/genetics , Bone Morphogenetic Protein 2/metabolism , Cells, Cultured , Gene Knockdown Techniques , Histone Demethylases/genetics , Histone Demethylases/metabolism , Humans , Signal Transduction/genetics , Smad4 Protein/metabolism , Tissue Engineering
12.
Stem Cells ; 37(12): 1542-1555, 2019 12.
Article in English | MEDLINE | ID: mdl-31574189

ABSTRACT

Mitochondrial phosphoenolpyruvate carboxykinase (PCK2) is a rate-limiting enzyme that plays critical roles in multiple physiological processes. The decompensation of PCK2 leads to various energy metabolic disorders. However, little is known regarding the effects of PCK2 on osteogenesis by human mesenchymal stem cells (hMSCs). Here, we report a novel function of PCK2 as a positive regulator of MSCs osteogenic differentiation. In addition to its well-known role in anabolism, we demonstrate that PCK2 regulates autophagy. PCK2 deficiency significantly suppressed autophagy, leading to the impairment of osteogenic capacity of MSCs. On the other hand, autophagy was promoted by PCK2 overexpression; this was accompanied by increased osteogenic differentiation of MSCs. Moreover, PCK2 regulated osteogenic differentiation of MSCs via AMP-activated protein kinase (AMPK)/unc-51 like autophagy activating kinase 1(ULK1)-dependent autophagy. Collectively, our present study unveiled a novel role for PCK2 in integrating autophagy and bone formation, providing a potential target for stem cell-based bone tissue engineering that may lead to improved therapies for metabolic bone diseases. Stem Cells 2019;37:1542-1555.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Osteogenesis/physiology , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Bone Development/physiology , Bone and Bones/cytology , Cell Line , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mitochondria/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/genetics , RNA Interference , RNA, Small Interfering/genetics
13.
PLoS One ; 11(9): e0162181, 2016.
Article in English | MEDLINE | ID: mdl-27583435

ABSTRACT

Numerous epidemiological studies have focused on the prevalence and related indicators of tooth wear. However, no sufficient studies have been conducted with Chinese adults. The purpose of this study was to assess the prevalence of tooth wear and identify related indicators among adults aged 36 to 74 years in Wuhan City, P.R. China. A cross-sectional and analytic study was conducted with 720 participants, aged 35-49 yrs and 50-74 yrs, in 2014. Each age group included 360 participants, of which 50% were males and 50% were females. All participants completed a questionnaire before examination. Tooth wear was assessed using the modified Basic Erosive Wear Examination (BEWE) index. The data were analyzed using the chi-square test and binary logistic regression analysis. The prevalence of tooth wear was 67.5% and 100% in the 35-49 and 50-74 age groups, respectively. The prevalence of dentin exposure was 64.7% and 98.3%, respectively. A significantly higher prevalence of tooth wear and dentin exposure was found in the 50-74 yr group than in the 35-49 yr group (p < 0.05). Critical indicators of tooth wear and dentin exposure included high frequency of acidic drinks and foods consumption, low socio-economic status, and unilateral chewing. The frequency of changing toothbrushes and the habit of drinking water during meals were associated with tooth wear. In addition, the usage of hard-bristle toothbrushes and consuming vitamin C and aspirin were found to be linked with dentin exposure. In conclusion, the prevalence of tooth wear and dentin exposure observed in Chinese adults was high, and the results revealed an association between tooth wear and socio-behavioral risk indicators.


Subject(s)
Tooth Wear/epidemiology , Adult , Aged , China/epidemiology , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Prevalence
14.
BMC Oral Health ; 15(1): 120, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26453049

ABSTRACT

BACKGROUND: Tooth wear has been investigated in numerous countries, and the prevalence has varied. However, the data on tooth wear in China are scarce. The aim of this study was to describe the prevalence of tooth wear and to investigate the relative indicators associated with tooth wear in 12- and 15-year-old adolescents in Wuhan City, Hubei Province, Central China. METHODS: A cross-sectional descriptive study was undertaken among 720 adolescents in Hubei Province, Central China. The age groups in this study were 12- and 15-year-old, and each group consisted of 360 participants in which females and males represented 50 % each. A modified version of the Basic Erosive Wear Examination (BEWE) tooth wear index was used for the buccal, cervical, occlusal/incisal and lingual surfaces of all of the teeth in the 720 adolescents. All of the participants were asked to answer a questionnaire consisting of questions about their current and historical dietary habits and oral hygiene. RESULTS: The prevalence of tooth wear was 18.6 and 89.4 % in 12- and 15-year-old adolescents, respectively. The prevalence rates of dentin exposure were 1.9 and 5.6 %, respectively. A significantly higher prevalence of tooth wear and dentin exposure in 15-year-old adolescents was found than in 12-year-old adolescents (p < 0.001 and p = 0.011). Several factors such as drinking soft drinks and fruit juices immediately after sports, taking aspirin, reflux, unilateral chewing, tooth brushing once daily or less often, duration of brushing less than 2 min and swimming in the summer were found to be associated with tooth wear. CONCLUSIONS: Tooth wear in 12- and 15-year-old adolescents in Central China is a significant problem and should receive greater attention. The prevalence of tooth wear increases with age and associated with socio-behavioral risk factors.


Subject(s)
Tooth Erosion , Tooth Wear , Adolescent , Child , China/epidemiology , Cross-Sectional Studies , Feeding Behavior , Female , Humans , Male , Oral Hygiene , Prevalence , Risk Factors , Tooth Attrition , Tooth Erosion/epidemiology , Tooth Wear/epidemiology , Toothbrushing
15.
PLoS One ; 10(6): e0129432, 2015.
Article in English | MEDLINE | ID: mdl-26075610

ABSTRACT

OBJECTIVES: Ectrodactyly ectodermal dysplasia cleft lip/palate (EEC) syndrome and limb-mammary syndrome (LMS) share a similar phenotype and the same pathogenic gene, which complicates the ability to distinguish between these diagnoses. The current study aims to identify a potential and practical clinical biomarker to distinguish EEC from LMS. METHODS: Two EEC pedigrees and one LMS pedigree that have been previously reported were reanalyzed. After confirmation of the causative mutations for these new patients, whole-genome expression microarray analysis was performed to assess the molecular genetic changes in these families. RESULTS: Five new patients with classic symptoms were reported, and these individuals exhibited the same mutation as their relatives (c.812 G>C; c.611G>A; and c.680G>A). According to the whole genome expression results, the EEC patients exhibited different gene expression characteristics compared with the LMS patients. More than 5,000 genes were differentially expressed (changes >2 or <0.5-fold) among the EEC patients, LMS patients and healthy individuals. The top three altered pathways have been implicated in apoptosis, the hematopoietic cell lineage and the Toll-like receptor signaling pathway. CONCLUSION: Our results provide additional clinical and molecular information regarding EEC and LMS and suggest that peripheral blood cytokines may represent a promising clinical biomarker for the diagnosis of these syndromes.


Subject(s)
Breast/abnormalities , Cleft Lip/genetics , Cleft Palate/genetics , Ectodermal Dysplasia/genetics , Gene Expression Regulation , Genetic Association Studies , Limb Deformities, Congenital/genetics , Adult , Chromosome Mapping , Cluster Analysis , Female , Gene Expression Profiling , Humans , Male , Mutation , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...