Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 23(3)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804116

ABSTRACT

The degradation and recovery processes are multi-scale phenomena in many physical, engineering, biological, and social systems, and determine the aging of the entire system. Therefore, understanding the interplay between the two processes at the component level is the key to evaluate the reliability of the system. Based on the principle of maximum entropy, an approach is proposed to model and infer the processes at the component level, and is applied to repairable and non-repairable systems. By incorporating the reliability block diagram, this approach allows for integrating the information of network connectivity and statistical moments to infer the hazard or recovery rates of the degradation or recovery processes. The overall approach is demonstrated with numerical examples.

2.
Phys Rev E ; 101(1-1): 012106, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32069657

ABSTRACT

The aging process is a common phenomenon in engineering, biological, and physical systems. The hazard rate function, which characterizes the aging process, is a fundamental quantity in the disciplines of reliability, failure, and risk analysis. However, it is difficult to determine the entire hazard function accurately with limited observation data when the degradation mechanism is not fully understood. Inspired by the seminal work pioneered by Jaynes [Phys. Rev. 106, 620 (1956)PHRVAO0031-899X10.1103/PhysRev.106.620], this study develops an approach based on the principle of maximum entropy. In particular, the time-dependent hazard rate function can be established using limited observation data in a rational manner. It is shown that the developed approach is capable of constructing and interpreting many typical hazard rate curves observed in practice, such as the bathtub curve, the upside down bathtub, and so on. The developed approach is applied to model a classical single function system and a numerical example is used to demonstrate the method. In addition its extension to a more general multifunction system is presented. Depending on the interaction between different functions of the system, two cases, namely reducible and irreducible, are discussed in detail. A multifunction electrical system is used for demonstration.

3.
Sci Rep ; 8(1): 7117, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29740079

ABSTRACT

The continuous-time quantum walk on a one-dimensional graph of odd number of sites with an on-site potential at the center is studied. We show that such a quantum-walk system can construct an X-gate of a single qubit as well as a control gate for two qubits, when the potential is much larger than the hopping strength. We investigate the decoherence effect and find that the coherence time can be enhanced by either increasing the number of sites on the graph or the ratio of the potential to the hopping strength, which is expected to motivate the design of the quantum gate with long coherence time. We also suggest several experimental proposals to realize such a system.

SELECTION OF CITATIONS
SEARCH DETAIL
...