Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 303(Pt 2): 134663, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35447204

ABSTRACT

Low molybdenum (Mo) bioavailability in acidic soil obstructs vegetable nitrogen assimilation and thus increases the health risk of vegetable ingestion due to nitrate accumulation. Constantly providing available Mo in acidic soil is a challenge for decreasing nitrate accumulation in vegetables. In this study, three Mo application methods, including biochar-based Mo slow-release fertilizer (Mo-biochar), seed dressing, and basal application, were investigated to enhance Mo bioavailability in acidic soil and nitrogen assimilation in Chinese flowering cabbage (Brassica parachinensis). The results showed that Mo-biochar constantly and sufficiently supplied Mo nutrients throughout the growing period of Brassica parachinensis, as evidenced by the soil available Mo, plant Mo uptake, and Mo values. The improved Mo supply was attributed to the alleviation of acidic soil (pH from 5.10 to 6.99) and the slow release of Mo adsorbed on biochar. Mo-biochar increased the nitrate reductase (NR) activity by 238.6% and glutamate dehydrogenase activity by 27.5%, indicating an enhancement of the rate-limiting steps of nitrogen assimilation, especially for nitrate reduction and amino acid synthesis. The increase in Mo-containing NR could be directly ascribed to the high level of Mo in Brassica parachinensis. Compared with the control, the nitrate content of Brassica parachinensis decreased by 42.9% due to the nitrate reduction induced by increased NR. Additionally, Mo-biochar was beneficial to vegetable growth and quality. In contrast, the transformation from NO3- to NH4+ was blocked with Mo seed dressing and basal application because of low Mo bioavailability in the soil, resulting in a high nitrate content in Brassica parachinensis. Conclusively, Mo-biochar can slowly release Mo and improve the neutral environment for Mo bioavailability, which is an effective strategy to mitigate the high nitrate accumulation of vegetables planted in acidic soil.


Subject(s)
Brassica , Fertilizers , Brassica/metabolism , Charcoal , China , Fertilizers/analysis , Molybdenum/pharmacology , Nitrates/metabolism , Nitrogen/analysis , Soil/chemistry
2.
J Sci Food Agric ; 101(13): 5583-5590, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33709452

ABSTRACT

BACKGROUND: Most countries set regulatory values for the total trace element (TE) concentrations in soil, although there is growing interest in using a risk-based approach to evaluate the bioavailable TE using dilute salt extractants or other soil parameters, including pH and organic carbon. The present study compares the current regulatory system (based on total TEs and pH) and a risk-based approach using 0.01 mol L-1 CaCl2 to estimate the bioavailable fraction. RESULTS: In total, 150 paired samples of Chinese flowering cabbages (Brassica parachinensis) and their growth soils were collected, and the total and extractable concentrations of chromium (Cr), cadmium (Cd), lead (Pb), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As) and mercury (Hg), as well as soil pH and organic matter content, were measured. No more than 3.33% of the edible parts exceeded Chinese food safety standards, even when growing in soils exceeding the current regulatory thresholds by over 50%. The total soil Cd (1.5 mg kg-1 ), as well as the extractable concentrations of Cd (0.1 mg kg-1 ), Ni (0.03 mg kg-1 ) and Zn (0.1 mg kg-1 ), are the key factors affecting the TE concentrations in B. parachinensis. CONCLUSION: Our findings suggest that the current soil regulatory guidelines for safe production of B. parachinensis are overly strict and conservative. A risk-based approach based on the extractable TE concentrations would provide a better indication for plant uptake of soil TEs and avoid the waste of farmlands that can still produce safe vegetables. Future research should focus on providing crop-specific available TE concentration guidelines to promote effective utilization of farmlands. © 2021 Society of Chemical Industry.


Subject(s)
Brassica/chemistry , Trace Elements/analysis , Arsenic/analysis , Brassica/classification , Brassica/growth & development , Cadmium/analysis , China , Chromium/analysis , Copper/analysis , Food Safety , Mercury/analysis , Metals, Heavy/analysis , Nickel/analysis , Soil/chemistry , Soil Pollutants/analysis , Vegetables/chemistry , Vegetables/classification , Vegetables/growth & development , Zinc/analysis
3.
Ecotoxicol Environ Saf ; 189: 110010, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31787381

ABSTRACT

Nitrogen (N) forms not only affect cadmium (Cd) accumulation in plants, but also affect plant resistance to Cd toxicity. However, few researches have been reported underlying the mechanism of the relationship between nitrogen forms and plant resistance under Cd exposure. Here, we explored the mechanism on how different NO3-/NH4+ ratios affect antioxidase system and the glutathione-ascorbate cycle under five different ratios of NO3-/NH4+ (1:0, 2:1, 1:1, 1:2, 0:1) and three dosages of Cd exposure (0, 1, 5 µmol L-1 Cd) in rice (Oryza sativa L.). The results showed that high NO3- and high Cd exposure both significantly inhibited tissue growth of rice plants, and this inhibiting trend was mitigated with increasing NH4+ ratios as proved by the increased biomass and the decreased concentrations of malonaldehyde (MDA) and hydrogen peroxide (H2O2), as well as the levels of Cd contents in rice tissues. Additionally, high NH4+ ratios elevated the SOD activities in rice tissues, especially at high Cd treatment. However, other two antioxidases (CAT and APX) were insensitive to changes of NO3-/NH4+ ratios (except the full NO3-). Furthermore, high NH4+ ratios induced increasing of the efficiency of glutathione-ascorbate cycle (GSH-AsA) under two levels of Cd exposure, as evidenced by increasing concentrations of GSH and AsA and the activities of GR and DHAR in rice tissues. Overall, these results revealed that ammonium nutrition caused an enhancement resistance to Cd stress in rice plants was responsible for increasing of partial antioxidase system and the efficiencies of GSH-AsA cycle.


Subject(s)
Ammonium Compounds/pharmacology , Ascorbic Acid/metabolism , Cadmium/toxicity , Glutathione/metabolism , Oryza/metabolism , Ammonium Compounds/analysis , Cadmium/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Nitrates/analysis , Nitrates/pharmacology , Oryza/drug effects , Oxidative Stress/drug effects , Oxidoreductases/metabolism
4.
Chemosphere ; 207: 267-277, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29803158

ABSTRACT

An important pathway for biochar to alter the availability of soil phosphorus (P) is to change P sorption characteristics of the soil. The aim of this study was to understand the mechanisms of biochar effects on P sorption in acid upland red soils in the presence of different concentrations of exogenous P. Rice straw biochar (RSB) was prepared and applied at rates of 0, 1%, 3%, and 5% (w/w) to three red soils (MZ1, MZ2, and QY1) differing in initial pH (pH = 4.31, 4.82, and 5.68, respectively). The P sorption characteristics of these red soils were described using the Langmuir and Temkin equations and their relationships with soil basic physicochemical properties were analyzed. Furthermore, a representative red soil (MZ2) was selected to analyze the zeta potential of soil colloids and the chemical properties of sorption equilibrium solution, in order to understand their relationships with P sorption characteristics. Results showed that within a certain range of P concentration in the equilibrium solution, the amount of P sorbed by the three red soils decreased and the corresponding amount of P desorbed increased with increasing amendment rate of RSB. RSB showed the greatest effect on P desorption characteristics of MZ2 soil in the presence of higher exogenous P concentration. With increasing RSB amendment rate, the maximum P sorption of MZ1 soil decreased, while those of MZ2 and QY1 soils increased after an initial decrease. Phosphate sorption equilibrium constant and maximum P buffer capacity of each soil first increased and then decreased. However, a single physicochemical property could not interpret complex changes in multi-factors that jointly determine the P sorption characteristics of red soils. In the case of MZ2 soil, RSB amendment shifted the zeta potential of soil colloids to the negative direction; this decreased the positive charge and increased the negative charge on the soil surface, thus reducing P sorption in the MZ2 soil. In the presence of the same concentration of exogenous P, RSB amendment altered the pH, dissolved organic C (DOC), humification index (HIX), and maximum fluorescence intensity (Fmax) in the sorption equilibrium solution. In most cases, the amount of P sorbed by the MZ2 soil was negatively correlated with the pH value, DOC concentration, HIX value, and Fmax value of humic-like dissolved organic matter (DOM), and positively correlated with the Fmax value of protein-like DOM (P < 0.05 or P < 0.01). The relative fractional distribution of the contents for humic-like and protein-like DOM might determine the difference in the P sorption characteristics of MZ2 soil. In conclusion, different amendment rates of RSB affected the release of phosphate from soil surfaces into the solution by altering basic physicochemical and electrochemical properties of red soils and chemical properties of sorption equilibrium solution.


Subject(s)
Charcoal/chemistry , Oryza/chemistry , Phosphorus/chemistry , Soil Pollutants/chemistry , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...