Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 88(8): 1944-1956, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37906451

ABSTRACT

With the rapid expansion of industrial activities, chromium ions are discharged into the environment and cause water and soil pollution of various extents, which seriously endangers the natural ecological environment and human health. In this study, polyaniline/polyvinyl alcohol/amyloid fibril (PANI/PVA/AFL) composite gel beads (PPA) were prepared from polyaniline and amyloid fibrils with HCl as doping acid and PVA as a cross-linking agent. The results showed that PPA was an irregular composite bead with a diameter of 6 mm. The adsorption of Cr(VI) on the PPA gel beads followed the pseudo-second-order kinetics model, suggesting that chemical reactions were the controlling step in the Cr(VI) adsorption process. Though the Redlich-Peterson isotherm model had the best fit for the adsorption data, the isothermal adsorption process can be simplified using the Langmuir model. The maximum adsorption capacity for Cr(VI) in water was 51.5 mg g-1, comparable to or even higher than some PANI-based nanomaterials. Thermodynamic parameters showed that the adsorption process was a spontaneous, endothermic, and entropy-increasing process. Microscopic analysis revealed that the capture of Cr(VI) on PPA was mainly governed by electrostatic attraction, reduction, and complexation reactions. PPA can be used as a kind of effective remediation agent to remove Cr(VI) in water.


Subject(s)
Water Pollutants, Chemical , Water , Humans , Water Pollutants, Chemical/analysis , Polyvinyl Alcohol , Amyloid , Chromium/analysis , Adsorption , Kinetics , Hydrogen-Ion Concentration
2.
Environ Res ; 212(Pt B): 113340, 2022 09.
Article in English | MEDLINE | ID: mdl-35452671

ABSTRACT

Sulfate radical (SO4•-) based advanced oxidation processes (SR-AOPs) is a very important chemical oxidation technology for the degradation of recalcitrant organic pollutants in water and has been well developed. Recently, transition metals or their oxides-modified biochar has been widely used as the catalyst to catalyze peroxymonosulfate (PMS) and peroxydisulfate (PS) in SR-AOPs due to their outstanding properties (e.g., large surface area, high stability, abound catalytic sites, and diversity of material design, etc.). These composite materials not only combine the respective beneficial characteristics of biochar and transition metals (or their oxides) but also often present synergistic effects between the components. In this review, we present the synthesis of different types of transition metal (or metal oxides)/biochar-based catalysts and their application in SR-AOPs. The catalytic mechanism, including the generation process of free radicals and other reaction pathways on the surface of the catalyst were also carefully discussed. Particular attention has been paid to the synergistic effects between the components that result in enhanced catalytic performance. At the end of this review, the future development prospects of this technology are proposed.


Subject(s)
Charcoal , Water Pollutants, Chemical , Oxidation-Reduction , Oxides , Sulfates , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...