Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 43(3): 563-576, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34103690

ABSTRACT

Myelin damage and abnormal remyelination processes lead to central nervous system dysfunction. Glial activation-induced microenvironment changes are characteristic features of the diseases with myelin abnormalities. We previously showed that ginsenoside Rg1, a main component of ginseng, ameliorated MPTP-mediated myelin damage in mice, but the underlying mechanisms are unclear. In this study we investigated the effects of Rg1 and mechanisms in cuprizone (CPZ)-induced demyelination mouse model. Mice were treated with CPZ solution (300 mg· kg-1· d-1, ig) for 5 weeks; from week 2, the mice received Rg1 (5, 10, and 20 mg· kg-1· d-1, ig) for 4 weeks. We showed that Rg1 administration dose-dependently alleviated bradykinesia and improved CPZ-disrupted motor coordination ability in CPZ-treated mice. Furthermore, Rg1 administration significantly decreased demyelination and axonal injury in pathological assays. We further revealed that the neuroprotective effects of Rg1 were associated with inhibiting CXCL10-mediated modulation of glial response, which was mediated by NF-κB nuclear translocation and CXCL10 promoter activation. In microglial cell line BV-2, we demonstrated that the effects of Rg1 on pro-inflammatory and migratory phenotypes of microglia were related to CXCL10, while Rg1-induced phagocytosis of microglia was not directly related to CXCL10. In CPZ-induced demyelination mouse model, injection of AAV-CXCL10 shRNA into mouse lateral ventricles 3 weeks prior CPZ treatment occluded the beneficial effects of Rg1 administration in behavioral and pathological assays. In conclusion, CXCL10 mediates the protective role of Rg1 in CPZ-induced demyelination mouse model. This study provides new insight into potential disease-modifying therapies for myelin abnormalities.


Subject(s)
Chemokine CXCL10/antagonists & inhibitors , Demyelinating Diseases/pathology , Ginsenosides/pharmacology , Animals , Cuprizone/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Hypokinesia/pathology , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , NF-kappa B/drug effects , Panax/chemistry , Panax/metabolism , Phagocytosis/drug effects , RNA, Small Interfering/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...