Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 43(1): 46-60, 2022 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-34989489

ABSTRACT

In order to investigate the chemical composition and source apportionment of aerosols during winter in the Beijing-Tianjin-Heibei region, the particular matter (PM) and aerosol chemical composition at Mt. Haituo were observed by using a GRIMM 180, a single-particle soot photometer (SP2), and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) from December 28, 2020 to February 3, 2021. Combining these observations with meteorological data and the HYSPLIT model, we calculated the potential source contribution factor (PSCF) and concentration weighted trajectory (CWT) and analyzed the temporal evolution and potential sources apportionment of PM and aerosol chemical composition under different pollution processes. The results showed that the dust storm process mainly affected PM10 and PM2.5 in Mt. Haituo during the winter and had a small impact on PM1; by contrast, haze pollution mainly affected PM1. Chemical components of aerosol accounted for 85.0% and 73.4% of PM1 on clean and haze days, respectively, but only 47.4% of PM1 in dust storm processes. NO3- was the chemical component with the largest mass concentration in haze, accounting for 25.2% of PM1; black carbon (BC) had the largest mass concentration on clean and dust storm days, accounting for 24.1% and 12.8% of PM1, respectively. The median diameters of BC were 209.7, 207.5, and 204.7 nm on clean, dust storm, and haze days, respectively. Dp/Dc was 2.15 in haze pollution, which was 1.38 and 1.39 times that on dust storm and clean days, respectively. Diurnal variations in PM and aerosol chemical components were different during the different processes. PM10 and PM2.5had high mass concentrations at night and low mass concentrations during the daytime on clean and dust storm days and had a unimodal distribution with a peak at 14:00 in haze. Diurnal variations in chemical composition had a unimodal distribution on clean days and a bimodal distribution on dust storm and haze days. The chemical compositions of the BC coating layer were different under different processes. The coating layers of BC were mainly NH4NO3, (NH4)2SO4, and organic matter on the clean, dust storm, and haze days, respectively. The distribution of potential sources of PM1 and its chemical components were different under different processes. The high-value area of the potential sources was mainly concentrated in the Beijing-Baoding-Shijiazhuang-Yangquan area in the southwestern portion of the site during dust storms and was mainly concentrated in Yanqing, Huailai, and Changping in the areas around the site during haze.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Beijing , China , Environmental Monitoring , Particulate Matter/analysis , Seasons
2.
Huan Jing Ke Xue ; 42(11): 5109-5121, 2021 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-34708950

ABSTRACT

To control the spread of the 2019 novel coronavirus(COVID-19), China imposed rigorous restrictions, which resulted in great reductions in pollutant emissions. However, two heavy haze pollution episodes still occurred in Beijing. In this study, we use the air pollutants, aerosol number concentration, and meteorological elements data in Beijing, combined with the HYSPLIT model, to calculate the potential source contribution factor(PSCF) and concentration weight trajectory(CWT), and analyze the characteristics of evolution and potential source apportionment of atmospheric pollutants during the two episodes. The COVID-19 lockdown restrictions had great impacts on the diurnal variations of PM2.5 and black carbon(BC), while small impacts on the diurnal variations of CO, NO2, SO2, and O3. The primary pollutant was PM2.5 during the two haze pollution episodes, and the haze1 episode was mainly local pollution, while haze 2 was mainly local and external transportation pollution. The spectrum of aerosol number concentration was unimodal under different processes, with the peak located at 0.3 µm. During the haze episodes, the number concentration in the size range of 0.2-0.5 µm increased 3.3-13.6 times that of the clean days. The mass concentration contributions of BCliquid to BC in different processes were 64.8%-85.1%. This mass concentration of BCliquid ranked in the order of haze 1(5.04 µg·m-3) >haze 1(3.20 µg·m-3) >clean day(before COVID-19) (2.31 µg·m-3) >clean day(COVID-19) (0.76 µg·m-3). The characteristics of PSCF and CWT distribution of PM2.5 and BC were different in different processes. The PSCF high value areas of PM2.5 on the clean day(before COVID-19) and the clean day(COVID-19) were mainly distributed in the southwest and western of Beijing, and the weight concentration exceeded 30 µg·m-3. The PSCF high value areas of PM2.5 during haze 1 and haze 2 were mainly distributed in Beijing and its surrounding areas and southwestern, when the weight concentration exceeded 90 µg·m-3. The PSCF high value areas of BC were mainly distributed in Beijing and its surrounding areas on clean days(before COVID-19), clean days(COVID-19) and haze 1, with weighted concentrations exceeding 2.4, 0.9 and, 4.5 µg·m-3, respectively. The PSCF high value areas of BC on haze 2 was distributed in the southwest of Beijing, and the weight concentration exceeded 5 µg·m-3.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Environmental Pollutants , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Beijing , China , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2 , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...