Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Aided Mol Des ; 25(7): 621-36, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21604056

ABSTRACT

Fragment Based Drug Discovery (FBDD) continues to advance as an efficient and alternative screening paradigm for the identification and optimization of novel chemical matter. To enable FBDD across a wide range of pharmaceutical targets, a fragment screening library is required to be chemically diverse and synthetically expandable to enable critical decision making for chemical follow-up and assessing new target druggability. In this manuscript, the Pfizer fragment library design strategy which utilized multiple and orthogonal metrics to incorporate structure, pharmacophore and pharmacological space diversity is described. Appropriate measures of molecular complexity were also employed to maximize the probability of detection of fragment hits using a variety of biophysical and biochemical screening methods. In addition, structural integrity, purity, solubility, fragment and analog availability as well as cost were important considerations in the selection process. Preliminary analysis of primary screening results for 13 targets using NMR Saturation Transfer Difference (STD) indicates the identification of uM-mM hits and the uniqueness of hits at weak binding affinities for these targets.


Subject(s)
Drug Discovery , Peptide Fragments/chemistry , Proteins/chemistry , Binding Sites , Combinatorial Chemistry Techniques/methods , Crystallography, X-Ray , Drug Industry , High-Throughput Screening Assays , Humans , Ligands , Magnetic Resonance Spectroscopy , Peptide Library , Protein Conformation
2.
J Comput Aided Mol Des ; 21(12): 665-73, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17599241

ABSTRACT

We developed highly predictive classification models for human liver microsomal (HLM) stability using the apparent intrinsic clearance (CL(int, app)) as the end point. HLM stability has been shown to be an important factor related to the metabolic clearance of a compound. Robust in silico models that predict metabolic clearance are very useful in early drug discovery stages to optimize the compound structure and to select promising leads to avoid costly drug development failures in later stages. Using Random Forest and Bayesian classification methods with MOE, E-state descriptors, ADME Keys, and ECFP_6 fingerprints, various highly predictive models were developed. The best performance of the models shows 80 and 75% prediction accuracy for the test and validation sets, respectively. A detailed analysis of results will be shown, including an assessment of the prediction confidence, the significant descriptors, and the application of these models to drug discovery projects.


Subject(s)
Computer Simulation , Microsomes, Liver/metabolism , Models, Biological , Pharmaceutical Preparations/metabolism , Caco-2 Cells , Cell Membrane Permeability , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...