Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Macro Lett ; 12(8): 1100-1105, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37470677

ABSTRACT

Here, we report an oxygen-tolerant photografting technique to grow polymer brushes employing microliter volumes of monomer solution under ambient conditions. With the key advantages that include spatial control, initiator/catalyst-free nature, and high oxygen tolerance, a series of homo-, multiblock, and arbitrary patterned polymer brushes were successfully obtained by photografting. Moreover, a dual-functional surface with hydrophilic and hydrophobic properties could easily be realized by one-pot photografting. These results illustrated the practicality and versatility of this strategy, which will allow nonexperts access to polymer brush architectures and broaden the potential applications of polymer brushes.

2.
ACS Sens ; 5(2): 303-307, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32039587

ABSTRACT

The detection of thiocyanate (SCN-) is particularly important in industrial effluents and biological fluids because of the toxic nature of SCN-. Herein, a metal-insulator-metal (MIM) resonator for visual detection of SCN- is presented based on a poly[(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) brush. The MIM resonator exhibits obvious color change as the concentration of SCN- changes, which can be easily distinguished by the naked eyes. In addition, the as-prepared MIM resonator also shows the advantages of good anti-interference, excellent reusability, and fast response rate. Combining the above advantages, the proposed MIM resonator may provide a broad perspective for a wide variety of visible-light applications.


Subject(s)
Biosensing Techniques/methods , Thiocyanates/chemistry , Transducers/standards
3.
ACS Macro Lett ; 9(3): 328-333, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-35648544

ABSTRACT

A facile and universal oxygen-tolerant, capillary microfluidic-derived, controlled radical polymerization for surface structuring (gradient and patterned polymer brushes) is reported. A syringe pump and a filter paper sheet are used as capillary microfluidic to supply the reaction solution (monomer, solvent, and ligand) to a sandwich-shaped setup by placing a flat copper plate onto an ATRP initiator-modified substrate and resulting in gradient polymer brush formation with controlled thickness, steepness, and grafting area, polymers are showing the high chain-end fidelity. Two different polymer brushes (binary polymer brushes) can be simultaneously grown from both ends of the initiator modified substrate by using this method, which can be used to study the interfacial properties of different polymer brushes.

4.
Chemistry ; 26(12): 2749-2753, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31826315

ABSTRACT

Poly(2-oxazoline)s (POx) bottle-brush brushes have excellent biocompatible and lubricious properties, which are promising for the functionalization of surfaces for biomedical devices. Herein, a facile synthesis of POx is reported which is based bottle-brush brushes (BBBs) on solid substrates. Initially, backbone brushes of poly(2-isopropenyl-2-oxazoline) (PIPOx) were fabricated via surface initiated Cu0 plate-mediated controlled radical polymerization (SI-Cu0 CRP). Poly(2-methyl-2-oxazoline) (PMeOx) side chains were subsequently grafted from the PIPOx backbone via living cationic ring opening polymerization (LCROP), which result in ≈100 % increase in brush thickness (from 58 to 110 nm). The resultant BBBs shows tunable thickness up to 300 nm and high grafting density (σ) with 0.42 chains nm-2 . The synthetic procedure of POx BBBs can be further simplified by using SI-Cu0 CRP with POx molecular brush as macromonomer (Mn =536 g mol-1 , PDI=1.10), which results in BBBs surface up to 60 nm with well-defined molecular structure. Both procedures are significantly superior to the state-of-art approaches for the synthesis of POx BBBs, which are promising to design bio-functional surfaces.


Subject(s)
Biocompatible Materials/chemical synthesis , Oxazoles/chemical synthesis , Copper/chemistry , Molecular Structure , Oxazoles/chemistry , Polyamines/chemistry , Polymerization , Polypropylenes/chemistry
5.
ACS Appl Mater Interfaces ; 11(44): 41668-41675, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31623430

ABSTRACT

Dynamic color-changing nanomaterials have been widely investigated for applications in fields like optical sensors, wearable activity monitors, smart electronic devices, and anticounterfeiting materials due to the excellent ability to change their optical properties with external variation. Here, a simple metal-insulator-metal (MIM) trilayer Fabry-Perot resonance cavity with a poly(N-isopropylacrylamide) (PNIPAm) brush layer as a responsive element is reported as a thermal-induced colorimetric response platform. The dynamic changes of conformation and physical properties of PNIPAm brush layer in response to external signals give rise to a significant color change of the MIM Fabry-Perot resonance cavity. This MIM Fabry-Perot resonance cavity shows the advantages of dynamic color change, rapid response, good repeatability, and simple construction. Additionally, the as-prepared MIM cavity shows great potential in various applications such as color printing, multicolor indicator, and information anticounterfeiting.

6.
Angew Chem Int Ed Engl ; 57(50): 16380-16384, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30300921

ABSTRACT

We present the "on water" surface-initiated Cu-mediated controlled radical polymerization ("on water" SI-CuCRP) that converts hydrophobic monomers in aqueous reaction medium to polymer brushes at unparalleled speed and efficiency. The method allows the facile conversion of a variety of common monomers under most simple reaction conditions and with minimal monomer amounts to thick and homogeneous polymer brushes. The highly living character of the "on water" SI-CuCRP allowed the preparation of decablock (homo)polymer brushes and opens the pathway to sequentially controlled polymer brushes on solids.

SELECTION OF CITATIONS
SEARCH DETAIL
...