Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 920: 171033, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38369164

ABSTRACT

Wastewater treatment plants (WWTPs) contribute significantly to the control of pollution in water. However, they are significant energy consumers. Identifying the factors influencing energy consumption is crucial for enhancing the energy efficiency of WWTPs. To address this, the unit energy consumption (UEC) of WWTPs was predicted using machine learning models. In order to accurately evaluate WWTPs' energy utilization efficiency, a comprehensive energy evaluation indicator, UEC (kWh/kg TODremoved) was utilized in this study. Among the prediction models, the eXtreme Gradient Boosting (XGBoost) achieves the highest prediction accuracy. SHapley Additive exPlanations (SHAP) was adopted as the model explanation system, and the results revealed that UEC was negatively affected by TN concentration, which was the most influential factor. The stoichiometry-based model calculation result indicates that the nitrification consumes average 77 % of the overall oxygen demand. SHAP analysis illustrated that the UEC of main technologies decreases with increasing influential factors. Partial dependence plot (PDP) compared average UEC of these technologies and SBR consumed the least amount of energy. The research also indicated that low influent TN concentration is the main problem in China. Consequently, it is imperative to exert efforts in ensuring the influent TN concentration while simultaneously making appropriate adjustments to the treatment process. This study provides valuable implications and methods for retrofitting and upgrading WWTPs.

2.
Sci Total Environ ; 912: 169185, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38092219

ABSTRACT

Conversion of waste activated sludge (WAS) to methane by anaerobic digestion (AD) is often limited by the slow rate of hydrolysis, and the presence of metal ions in sludge is regarded as a critical factor hindering sludge hydrolysis. This study developed a novel strategy to remove Fe from WAS by using ascorbic acid (VC) as a reducing agent under acidic conditions. The feasibility of reduction pretreatment in improving methane production of AD and its intrinsic mechanism were investigated. Results indicate that, under VC doses of 100 mmol/L and pH of 3.50, pretreatment removed 47.60 % of Fe, 59.88 % of Ca, and 51.86 % of Mg contained in the sludge. The removal of metal ions facilitated the disruption of sludge flocculation structure and extracellular polymeric substance (EPS) layers, leading to a 14.78 % increase in cell lysis and a decrease in fractal dimension values to 2.08. Batch AD experiments showed that VC pretreatment improved methane production, with an optimized net methane yield of 190.22 mL/g·VS, an increase of 134.75 % compared to raw WAS. The pretreatment affected the interfacial interaction energy of the sludge, leading to a transformation in the sludge surfaces from hydrophilic to hydrophobic, reducing the interaction between sludge molecules and increasing the number of binding sites available for enzymatic reactions. According to a study of microbial communities, it was found that VC pretreatment caused an increase in the presence of essential functional microbes responsible for hydrolysis, acidification, and methanation. This increase in acetoclastic and hydrogenotrophic methanogens resulted in a substantial enhancement in methane production. These results can be used to develop better pretreatment methods to enhance AD performance.


Subject(s)
Extracellular Polymeric Substance Matrix , Sewage , Anaerobiosis , Sewage/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Waste Disposal, Fluid/methods , Metals , Methane/metabolism , Ions , Bioreactors
3.
Environ Res ; 227: 115779, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36967003

ABSTRACT

Previous studies have shown that high salinity environments can inhibit anaerobic digestion (AD) of food waste (FW). Finding ways to alleviate salt inhibition is important for the disposal of the growing amount of FW. We selected three common conductive materials (powdered activated carbon, magnetite, and graphite) to understand their performance and individual mechanisms that relieve salinity inhibition. Digester performances and related enzyme parameters were compared. Our data revealed that under normal and low salinity stress conditions, the anaerobic digester ran steady without significant inhibitions. Further, the presence of conductive materials promoted conversion rate of methanogenesis. This promotion effect was highest from magnetite > powdered activated carbon (PAC) > graphite. At 1.5% salinity, PAC and magnetite are beneficial in maintaining high methane production efficiency while control and the graphite added digester acidified and failed rapidly. Additionally, metagenomics and binning were used to analyze the metabolic capacity of the microorganisms. Some species enriched by PAC and magnetite possessed higher cation transport capacities and were to accumulate compatible solutes. PAC and magnetite promoted direct interspecies electron transference (DIET) and syntrophic oxidation of butyrate and propionate. Also, the microorganisms had more energy available to cope with salt inhibition in the PAC and magnetite added digesters. Our data imply that the promotion of Na+/H+ antiporter, K+ uptake, and osmoprotectant synthesis or transport by conductive materials may be crucial for their proliferation in highly stressful environments. These findings will help to understand the mechanisms of alleviate salt inhibition by conductive materials and help to recover methane from high-salinity FW.


Subject(s)
Graphite , Refuse Disposal , Ferrosoferric Oxide , Anaerobiosis , Food , Charcoal , Salt Tolerance , Metagenomics , Bioreactors , Methane , Sewage
4.
Water Res ; 229: 119476, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36516494

ABSTRACT

Due to the widespread application of various iron (Fe)-derived substances used in phosphorus (P) removal during wastewater treatment, Fe-P species generated in this process constitute an important part of P speciation in non-digested sludge. SEM-EDS and sequential extraction methods were utilized to analyze the speciation, distribution, and spatial variation of P contained in the sludge. Inorganic P accounted for 91.3% of the total P, and Fe(III)-P represented the greatest percentage (68.5%) in the inorganic P fraction. Ascorbic acid, also known as vitamin C (VC), performed well in releasing P from sludge, especially in combination with subsequent pH adjustment to 3.0 using HCl. Fe(III)-P in sludge was first reduced to Fe(II)-P by VC, then dissolved in acidic conditions to release Fe2+ and PO43-. Other metal-P compounds were also partially dissolved and released. VC disrupted the sludge floc structure, releasing organic P via organic efflux. There was a positive correlation (R2>0.97, p<0.05) between the amount of released P and the amount of reductant (VC). There was a synergistic effect between 120 mmol/L VC and acidity, producing the greatest P release of 67.1% of total sludge P. The P release efficiency achieved in this study was higher than other reported methods. Additionally, VC provides a more sustainable option due to its natural biodegradability. Released P and Fe2+ can be recovered as vivianite with recovery rates of 88% and 99%, respectively. This finding provides a new direction for effective, sustainable sludge P recovery and utilization.


Subject(s)
Phosphorus , Sewage , Phosphorus/chemistry , Ferric Compounds , Solubility , Waste Disposal, Fluid/methods , Ascorbic Acid
5.
J Liposome Res ; 33(2): 144-153, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35875973

ABSTRACT

OBJECTIVE: To investigate the preparation of novel nanoliposomes (Borneol Angelica Polysaccharide Liposomes, BAPL) for anti-cerebral ischaemia and verify its curative effects and mechanism. METHODS: By applying a uniform experiment design to investigate the fitting combination of BAPL. Encapsulation Efficiency Evaluation of BAPL Preparation; Particle Size and Surface Potential Evaluation of BAPL Biological activity; Cerebral ischaemia models of rats Evaluation of BAPL curative effects and mechanism. RESULTS: (1) The fitting combination of lecithin, Cholesterol, AP mass and the borneol mass was 60 mg, 60 mg, 45 mg and 5 mg. the highest encapsulation efficiency was 80.4%, the particle size was 179.1 nm, and the surface zeta potential was -17.2 mV. It conforms to the nano-material standards. (2) The results of animal experiments show that: In the BAPL group, the infarct volume of TTC staining was significantly decreased, and the expression levels of NF-κBp65, TLR-4, IL-8, IL-6, IL-1ß in brain tissue were significantly decreased, while the expression levels of ZO-1, ZO-2, IL-10 were significantly increased after cerebral ischaemia-reperfusion. CONCLUSION: BAPL is a novel nano and effective material for anti-cerebral ischaemia.


Subject(s)
Brain Ischemia , Liposomes , Rats , Animals , Brain Ischemia/drug therapy , Ischemia , Polysaccharides/pharmacology
6.
Sci Total Environ ; 859(Pt 1): 160099, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36370781

ABSTRACT

The scarcity of phosphorus (P) resources makes the recovery of P urgent. Sludge is a secondary resource rich in P, and the release of P from it is a key step for recovery. Hydrothermal (HT) is currently a popular method for sludge pretreatment, and its combination with alkaline (alkali-hydrothermal, AHT) could reduce the energy consumption in treatment. This study tried to compare their P release profiles in treating activated sludge in which organic P (OP) and non-apatite inorganic P (NAIP) were co-existence. Apart from the OP release in cell lysis, P release from NAIP brought by the joint effect of OH- and humic substances (HS) formed in treatment was focused. The results showed that, compared to HT treatment, more P was released when OH- participated (AHT), and the peak P release was observed at 160 °C. Variation of P distribution in the treated sludge revealed that more P was released from NAIP in AHT than in HT. HS formed in treatments was extracted and characterized. The amount and the structure of the HS varied significantly with the treatment conditions, and there was a linear correlation ship between PO43--P release and the humic acid (HA) amount in HS. Mechanism study indicated there was a synergism between HS and OH- in promoting PO43--P release from NAIP. This study linked HS produced by sludge with P release, which provided a new perspective for subsequent P recovery from sludge.


Subject(s)
Phosphorus , Sewage , Sewage/chemistry , Phosphorus/chemistry , Humic Substances , Alkalies
SELECTION OF CITATIONS
SEARCH DETAIL
...