Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Genome Biol ; 25(1): 91, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589937

ABSTRACT

BACKGROUND: Although sequencing technologies have boosted the measurement of the genomic diversity of plant crops, it remains challenging to accurately genotype millions of genetic variants, especially structural variations, with only short reads. In recent years, many graph-based variation genotyping methods have been developed to address this issue and tested for human genomes. However, their performance in plant genomes remains largely elusive. Furthermore, pipelines integrating the advantages of current genotyping methods might be required, considering the different complexity of plant genomes. RESULTS: Here we comprehensively evaluate eight such genotypers in different scenarios in terms of variant type and size, sequencing parameters, genomic context, and complexity, as well as graph size, using both simulated and real data sets from representative plant genomes. Our evaluation reveals that there are still great challenges to applying existing methods to plants, such as excessive repeats and variants or high resource consumption. Therefore, we propose a pipeline called Ensemble Variant Genotyper (EVG) that can achieve better genotyping performance in almost all experimental scenarios and comparably higher genotyping recall and precision even using 5× reads. Furthermore, we demonstrate that EVG is more robust with an increasing number of graphed genomes, especially for insertions and deletions. CONCLUSIONS: Our study will provide new insights into the development and application of graph-based genotyping algorithms. We conclude that EVG provides an accurate, unbiased, and cost-effective way for genotyping both small and large variations and will be potentially used in population-scale genotyping for large, repetitive, and heterozygous plant genomes.


Subject(s)
Algorithms , Benchmarking , Humans , Genotype , Genomics/methods , Genotyping Techniques/methods , Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
3.
Plant Biotechnol J ; 22(5): 1113-1131, 2024 May.
Article in English | MEDLINE | ID: mdl-38038155

ABSTRACT

Self-incompatibility (SI) is a widespread prezygotic mechanism for flowering plants to avoid inbreeding depression and promote genetic diversity. Citrus has an S-RNase-based SI system, which was frequently lost during evolution. We previously identified a single nucleotide mutation in Sm-RNase, which is responsible for the loss of SI in mandarin and its hybrids. However, little is known about other mechanisms responsible for conversion of SI to self-compatibility (SC) and we identify a completely different mechanism widely utilized by citrus. Here, we found a 786-bp miniature inverted-repeat transposable element (MITE) insertion in the promoter region of the FhiS2-RNase in Fortunella hindsii Swingle (a model plant for citrus gene function), which does not contain the Sm-RNase allele but are still SC. We demonstrate that this MITE plays a pivotal role in the loss of SI in citrus, providing evidence that this MITE insertion prevents expression of the S-RNase; moreover, transgenic experiments show that deletion of this 786-bp MITE insertion recovers the expression of FhiS2-RNase and restores SI. This study identifies the first evidence for a role for MITEs at the S-locus affecting the SI phenotype. A family-wide survey of the S-locus revealed that MITE insertions occur frequently adjacent to S-RNase alleles in different citrus genera, but only certain MITEs appear to be responsible for the loss of SI. Our study provides evidence that insertion of MITEs into a promoter region can alter a breeding strategy and suggests that this phenomenon may be broadly responsible for SC in species with the S-RNase system.


Subject(s)
Citrus , DNA Transposable Elements , DNA Transposable Elements/genetics , Citrus/genetics , Plant Breeding , Mutation , Ribonucleases/metabolism
4.
J Exp Bot ; 73(19): 6955-6970, 2022 11 02.
Article in English | MEDLINE | ID: mdl-35994773

ABSTRACT

Many proteins secreted from plant cells into the surrounding extracellular space help maintain cell structure and regulate stress responses in the external environment. In this study, under Pi-replete and depleted conditions, 652 high-confidence secreted proteins were quantified from wild-type (WT) and PHOSPHATE RESPONSE 2 (OsPHR2)-overexpressing suspension-cultured cells (SCCs). These proteins were functionally grouped as phosphatases, signal transduction proteins, pathogen-related (PR) proteins, cell wall-remodeling proteins, and reactive oxygen species (ROS) metabolism proteins. Although PHOSPHATE RESPONSE (PHR) transcription factors regulate two-thirds of Pi-responsive genes at the transcriptional level, only 30.6% of the Pi-starvation-regulated secreted proteins showed significant changes in OsPHR2-overexpressing SCCs. The OsPHR2-dependent systemic Pi signaling pathway mainly regulates phosphatases and PR proteins, which are involved in the utilization of organophosphate, pathogen resistance, and colonization by rhizosphere microorganisms. The OsPHR2-independent local Pi signaling pathway, on the other hand, largely regulated ROS metabolism proteins, cell wall-remodeling proteins, and signal transduction proteins, which are involved in modifying cell wall structure and root architecture. The functions of differentially expressed secreted proteins between WT and OsPHR2-overexpressing plants under Pi-sufficient and Pi-deficient conditions were further confirmed by analysis of the acid phosphatase activity, ROS content, and cell wall composition.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Phosphates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Secretome , Organophosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Plant Roots/metabolism
5.
Plant Cell Environ ; 45(1): 191-205, 2022 01.
Article in English | MEDLINE | ID: mdl-34550608

ABSTRACT

The concentration and homeostasis of intracellular phosphate (Pi) are crucial for sustaining cell metabolism and growth. During short-term Pi starvation, intracellular Pi is maintained relatively constant at the expense of vacuolar Pi. After the vacuolar stored Pi is exhausted, the plant cells induce the synthesis of intracellular acid phosphatase (APase) to recycle Pi from expendable organic phosphate (Po). In this study, the expression, enzymatic activity and subcellular localization of ACID PHOSPHATASE 1 (OsACP1) were determined. OsACP1 expression is specifically induced in almost all cell types of leaves and roots under Pi stress conditions. OsACP1 encodes an acid phosphatase with broad Po substrates and localizes in the endoplasmic reticulum (ER) and Golgi apparatus (GA). The phylogenic analysis demonstrates that OsACP1 has a similar structure with human acid phosphatase PHOSPHO1. Overexpression or mutation of OsACP1 affected Po degradation and utilization, which further influenced plant growth and productivity under both Pi-sufficient and Pi-deficient conditions. Moreover, overexpression of OsACP1 significantly affected intracellular Pi homeostasis and Pi starvation signalling. We concluded that OsACP1 is an active acid phosphatase that regulates rice growth under Pi stress conditions by recycling Pi from Po in the ER and GA.


Subject(s)
Acid Phosphatase/metabolism , Oryza/physiology , Phosphates/metabolism , Plant Proteins/metabolism , Stress, Physiological/physiology , Acid Phosphatase/genetics , Adaptation, Physiological , Choline/metabolism , Endoplasmic Reticulum/metabolism , Ethanolamine/metabolism , Gene Expression Regulation, Plant , Golgi Apparatus/metabolism , Homeostasis , Mutation , Phospholipids/metabolism , Phylogeny , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified
6.
PLoS One ; 16(1): e0245600, 2021.
Article in English | MEDLINE | ID: mdl-33481906

ABSTRACT

The HAD superfamily is named after the halogenated acid dehalogenase found in bacteria, which hydrolyses a diverse range of organic phosphate substrates. Although certain studies have shown the involvement of HAD genes in Pi starvation responses, systematic classification and bioinformatics analysis of the HAD superfamily in plants is lacking. In this study, 41 and 40 HAD genes were identified by genomic searching in rice and Arabidopsis, respectively. According to sequence similarity, these proteins are divided into three major groups and seven subgroups. Conserved motif analysis indicates that the majority of the identified HAD proteins contain phosphatase domains. A further structural analysis showed that HAD proteins have four conserved motifs and specified cap domains. Fewer HAD genes show collinearity relationships in both rice and Arabidopsis, which is consistent with the large variations in the HAD genes. Among the 41 HAD genes of rice, the promoters of 28 genes contain Pi-responsive cis-elements. Mining of transcriptome data and qRT-PCR results showed that at least the expression of 17 HAD genes was induced by Pi starvation in shoots or roots. These HAD proteins are predicted to be involved in intracellular or extracellular Po recycling under Pi stress conditions in plants.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Hydrolases/biosynthesis , Oryza/enzymology , Phosphates/metabolism , Plant Proteins/biosynthesis , Genome-Wide Association Study , Hydrolases/genetics , Oryza/genetics , Plant Proteins/genetics
7.
J Exp Bot ; 71(14): 4321-4332, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32270183

ABSTRACT

Whilst constitutive overexpression of particular acid phosphatases (APases) can increase utilization of extracellular organic phosphate, negative effects are frequently observed in these transgenic plants under conditions of inorganic phosphate (Pi) sufficiency. In this study, we identified rice purple acid phosphatase 10c (OsPAP10c) as being a novel and major APase that exhibits activities associated both with the root surface and with secretion. Two constructs were used to generate the OsPAP10c-overexpression plants by driving its coding sequence with either a ubiquitin promoter (UP) or the OsPAP10c-native promoter (NP). Compared with the UP transgenic plants, lower expression levels and APase activities were observed in the NP plants. However, the UP and NP plants both showed a similar ability to degrade extracellular ATP and both promoted root growth. The growth performance and yield of the NP transgenic plants were better than the wild-type and UP plants in both hydroponic and field experiments irrespective of the level of Pi supply. Overexpression of APase by its native promoter therefore provides a potential way to improve crop production that might avoid increased APase activity in untargeted tissues and its inhibition of the growth of transgenic plants.


Subject(s)
Oryza , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Gene Expression Regulation, Plant , Organophosphates , Oryza/genetics , Oryza/metabolism , Phosphates/metabolism , Phosphorus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...