Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922470

ABSTRACT

Fullerene transformation emerges as a powerful route to construct defect-rich carbon electrocatalysts, but the carbon bond breakage and reformation that determine the defect states remain poorly understood. Here, we explicitly reveal that the spatial proximity of disintegrated fullerene imposes a crucial impact on the bond reformation and electrocatalytic properties. A counterintuitive hard-template strategy is adopted to enable the space-tuned fullerene restructuring by calcining impregnated C60 not only before but also after the removal of rigid silica spheres (∼300 nm). When confined in the SiO2 nanovoids, the adjacent C60 fragments form sp3 bonding with adverse electron transfer and active site exposure. In contrast, the unrestricted fragments without SiO2 confinement reconnect at the edges to form sp2-hybridized nanosheets while retaining high-density intrinsic defects. The optimized catalyst exhibits robust alkaline oxygen reduction performance with a half-wave potential of 0.82 V via the 4e- pathway. Copper poisoning affirms the intrinsic defects as the authentic active sites. Density functional theory calculations further substantiate that pentagons in the basal plane lead to localized structural distortion and thus exhibit significantly reduced energy barriers for the first O2 dissociation step. Such space-regulated fullerene restructuring is also verified by heating C60 crystals confined in gallium liquid and a quartz tube.

2.
RSC Adv ; 12(54): 34904-34909, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540266

ABSTRACT

Fabricating high-capacity electrode materials toward supercapacitors has attracted increasing attention. Here we report a three-dimensional CNTs/NiCo2S4 nanocomposite material synthesized successfully by a facile one-step hydrothermal technique. As expected, a CNTs/NiCo2S4 electrode shows remarkable capacitive properties with a high specific capacitance of 890 C g-1 at 1 A g-1. It also demonstrates excellent cycle stability with an 83.5% capacitance retention rate after 5000 cycles at 10 A g-1. Importantly, when assembled into a asymmetric supercapacitor, it exhibits a high energy density (43.3 W h kg-1) and power density (800 W kg-1). The exceptional electrochemical capacity is attributed to the structural features, refined grains, and enhanced conductivity. The above results indicate that CNTs/NiCo2S4 composite electrode materials have great potential application in energy-storage devices.

3.
Nanomaterials (Basel) ; 12(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35564247

ABSTRACT

Manganese oxides, as a type of two-dimensional (2D) material with high specific area and low cost, are considered promising energy storage materials. Here, we report novel AgMn2O4/Na0.55Mn2O4 nanosheets created by a popular liquid precipitation method with different AgNO3 contents, and their corresponding physical and electrochemical characterizations are performed. The results show that the ultra-thin Na0.55Mn2O4 nanosheets were combined with the AgMn2O4 nanoparticles and an enhancement in their specific capacity was observed compared to the pristine sheets. This electrode material displays a peak specific capacitance of 335.94 F g-1 at 1 A g-1. Using an asymmetric supercapacitor (ASC) assembled using a positive electrode made of AgMn2O4/Na0.55Mn2O4 nanosheets and a reduced graphene oxide (rGO) negative electrode, a high energy density of 65.5 Wh kg-1 was achieved for a power density of 775 W kg-1. The ASC showed good cycling stability with a capacitance value maintained at 90.2% after 10,000 charge/discharge cycles. The excellent electrochemical performance of the device was ascribed to the heterostructures and the open space formed by the interconnected manganese oxide nanosheets, which resulted in a rapid and reversible faraday reaction in the interface and further enhanced its electrochemical kinetics.

4.
Membranes (Basel) ; 12(2)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35207058

ABSTRACT

Separators, as indispensable parts of LSBs (lithium-sulfur batteries), play a cucial role in inhibiting dendrite growth and suppressing the shuttle of lithium polysulfide (LiPSs). Herein, we prepared a functional carbon nanotube (CNT) and Fe-based Prussian blue (PB)@MXene/polypropylene (PP) composite separator using a facile vacuum filtration approach. The CNTs and MXene nanosheets are excellent electronic conductors that can enhance the composite separator electrical conductivity, while Fe-based Prussian blue with a rich pore structure can effectively suppress the migration by providing physical space to anchor soluble LiPSs and retain it as cathode active material. Additionally, MXene nanosheets can be well attached to Fe-based Prussian blue by an electrostatic interaction and contribute to the physical barriers that inhibit the shuttle of long-chain soluble Li2Sn (4 ≤ n ≤ 8). When used as a lithium-sulfur (Li-S) cell membrane with a functional coating layer of CNT+PB@MXene facing the cathode side, the batteries reveal a high initial discharge capacity (1042.6 mAh g-1 at 0.2 C), outstanding rate capability (90% retention of capacity at 1.0 C) and high reversible capacity (674.1 mAh g-1 after 200 cycles at 1.0 V). Of note, separator modification is a feasible method to improve the electrochemical performance of LSBs.

5.
Environ Sci Pollut Res Int ; 29(3): 3213-3229, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34734337

ABSTRACT

Due to their unique characteristics, nanomaterials are widely used in many applications including water treatment. They are usually synthesized via physiochemical methods mostly involving toxic chemicals and extreme conditions. Recently, the biogenic metal nanoparticles (Bio-Me-NPs) with microbes have triggered extensive exploration. Besides their environmental-friendly raw materials and ambient biosynthesis conditions, Bio-Me-NPs also exhibit the unique surface properties and crystalline structures, which could eliminate various contaminants from water. Recent findings in the synthesis, morphology, composition, and structure of Bio-Me-NPs have been reviewed here, with an emphasis on the metal elements of Fe, Mn, Pd, Au, and Ag and their composites which are synthesized by bacteria, fungi, and algae. Furthermore, the mechanisms of eliminating organic and inorganic contaminants with Bio-Me-NPs are elucidated in detail, including adsorption, oxidation, reduction, and catalysis. The scale-up applicability of Bio-Me-NPs is also discussed.


Subject(s)
Metal Nanoparticles , Nanostructures , Water Purification , Bacteria , Metals
6.
Chemistry ; 26(47): 10811-10816, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32496617

ABSTRACT

Porous carbon materials rich in defects are promising candidates in energy storage and conversion applications. Herein, a facile template-free approach is reported for the synthesis of a two-dimensional (2 D) mesoporous carbon material derived from fullerene (C60 ) microsheets (FMSs) through simple heat treatment. The sample obtained at 1000 °C (FMS1000) shows a large surface area of 1507.6 m2 g-1 owing to the presence of mesopores and rich defects, which promote electron and mass transfer in the electrocatalytic process of the oxygen reduction reaction (ORR), showing an excellent performance with an onset potential of 0.95 V, a half-wave potential of 0.85 V, and long-term durability of 2000 cycles, comparable to the performance of commercial Pt/C. Moreover, FMS1000 displays a remarkable supercapacitive property with a specific capacitance of 330.7 F g-1 at 0.2 A g-1 and good long-term stability with a capacitance retention of 97 % over 50 000 cycles. Thus, a practical strategy for the production of mesoporous carbon materials with different morphological structures and porous defects as high-performance energy materials is advanced.

7.
R Soc Open Sci ; 6(7): 190351, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31417737

ABSTRACT

In this study, natural manganese oxides (MnO x ), an environmental material with high redox potential, were used as a promising low-cost oxidant to degrade the widely used dyestuff methylene blue (MB) in aqueous solution. Although the surface area of MnO x was only 7.17 m2 g-1, it performed well in the degradation of MB with a removal percentage of 85.6% at pH 4. It was found that MB was chemically degraded in a low-pH reaction system and the degradation efficiency correlated negatively with the pH value (4-8) and initial concentration of MB (10-50 mg l-1), but positively with the dosage of MnO x (1-5 g l-1). The degradation of MB fitted well with the second-order kinetics. Mathematical models were also built for the correlation of the kinetic constants with the pH value, the initial concentration of MB and the dosage of MnO x . Furthermore, several transformation products of MB were identified with HPLC-MS, which was linked with the bond energy theory to reveal that the degradation was initiated with demethylation.

8.
Nanoscale ; 10(48): 23070-23079, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30511713

ABSTRACT

High-activity electrocatalysts play a crucial role in energy conversion through splitting water to produce hydrogen. Here we report the synthesis of a bimetallic phosphide of Ni-Co-P coupled with C60 molecules which acts as an electrocatalyst for the hydrogen evolution reaction (HER). Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterization reveals that the synthesized C60-decorated Ni-Co-P nanoparticles have an average diameter of ∼4 nm with rich structural defects. Electrochemical tests show that the as-synthesized C60-decorated Ni-Co-P catalyst with a C60-content of 3.93 wt% presents a low onset overpotential of 23.8 mV, a small Tafel slope value of 48 mV dec-1, and excellent hydrogen-evolution stability with a slight increase of its η10 from 97 mV to 102 mV after 500 cycles. Additionally, electrochemical impedance spectroscopy (EIS) confirms that the C60-decorated Ni-Co-P electrode possesses faster charge-transfer kinetics and hydrogen-adsorption kinetics than the C60-free Ni-Co-P electrode during the HER process. The synthesis of a C60-decorated composite is feasible and the composite can be used as an efficient and robust Pt-free catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...