Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(19): 11140-11152, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703140

ABSTRACT

Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.


Subject(s)
Colitis, Ulcerative , Curcumin , Metal-Organic Frameworks , Peptides , Curcumin/chemistry , Curcumin/administration & dosage , Metal-Organic Frameworks/chemistry , Animals , Humans , Peptides/chemistry , Peptides/administration & dosage , Colitis, Ulcerative/drug therapy , Mice , Chitosan/chemistry , Egg White/chemistry , Polysaccharides/chemistry , Male , Administration, Oral , Drug Synergism , gamma-Cyclodextrins/chemistry , Drug Carriers/chemistry , Egg Proteins/chemistry
2.
Int J Biol Macromol ; 269(Pt 1): 132107, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710246

ABSTRACT

Soft assembly of peptide and curcumin (Cur) molecules enables functional integration by finding dynamic equilibrium states through non-covalent interactions. Herein, we developed two soft assembly systems, curcumin-egg white peptides (Cur-EWP) aggregations (AGs) and Cur-EWP-casein-quaternary chitosan (Cur-EWP-CA-QC) nanoparticles (NPs) to comparatively investigate their therapeutic effects on ulcerative colitis in mice and elucidate their underlying mechanism. Results revealed that Cur-EWP AGs, despite gastrointestinal tract instability, exhibited a propensity for swift accumulation within the colorectal region, enriching mucus-associated and short-chain fatty acid (SCAF)-producing bacteria, restoring the intestinal barrier damage. Whereas, Cur-EWP-CA-QC NPs, benefiting from their remarkable stability and exceptional mucosal adsorption properties, not only enhanced permeability of Cur and EWP in the small intestine to activate the immune response and boost tight junction protein expression but also, in their unabsorbed state, regulated the intestinal flora, exerting potent anti-inflammatory activity. Soft assembly of peptides and hydrophobic nutraceuticals could synergize biological activities to modulate chronic diseases.


Subject(s)
Caseins , Chitosan , Colitis, Ulcerative , Curcumin , Curcumin/pharmacology , Curcumin/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Animals , Mice , Caseins/chemistry , Caseins/pharmacology , Nanoparticles/chemistry , Peptides/pharmacology , Peptides/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Male , Gastrointestinal Microbiome/drug effects , Egg White/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects
3.
J Agric Food Chem ; 72(22): 12340-12355, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776233

ABSTRACT

Lipid peroxidation (LP) leads to changes in the fluidity and permeability of cell membranes, affecting normal cellular function and potentially triggering apoptosis or necrosis. This process is closely correlated with the onset of many diseases. Evidence suggests that the phenolic hydroxyl groups in food-borne plant polyphenols (FPPs) make them effective antioxidants capable of preventing diseases triggered by cell membrane LP. Proper dietary intake of FPPs can attenuate cellular oxidative stress, especially damage to cell membrane phospholipids, by activating the Nrf2/GPx4 pathway. Nuclear factor E2-related factor 2 (Nrf2) is an oxidative stress antagonist. The signaling pathway regulated by Nrf2 is a defense transduction pathway of the organism against external stimuli such as reactive oxygen species and exogenous chemicals. Glutathione peroxidase 4 (GPx4), under the regulation of Nrf2, is the only enzyme that reduces cell membrane lipid peroxides with specificity, thus playing a pivotal role in regulating cellular ferroptosis and counteracting oxidative stress. This study explored the Nrf2/GPx4 pathway mechanism, antioxidant activity of FPPs, and mechanism of LP. It also highlighted the bioprotective properties of FPPs against LP and its associated mechanisms, including (i) activation of the Nrf2/GPx4 pathway, with GPx4 potentially serving as a central target protein, (ii) regulation of antioxidant enzyme activities, leading to a reduction in the production of ROS and other peroxides, and (iii) antioxidant effects on LP and downstream phospholipid structure. In conclusion, FPPs play a crucial role as natural antioxidants in preventing LP. However, further in-depth analysis of FPPs coregulation of multiple signaling pathways is required, and the combined effects of these mechanisms need further evaluation in experimental models. Human trials could provide valuable insights into new directions for research and application.


Subject(s)
Lipid Peroxidation , NF-E2-Related Factor 2 , Phospholipid Hydroperoxide Glutathione Peroxidase , Polyphenols , Signal Transduction , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Polyphenols/chemistry , Polyphenols/pharmacology , Polyphenols/metabolism , Humans , Lipid Peroxidation/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Animals , Signal Transduction/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/metabolism , Antioxidants/pharmacology , Oxidative Stress/drug effects , Membrane Lipids/metabolism , Reactive Oxygen Species/metabolism
4.
J Agric Food Chem ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592417

ABSTRACT

Bioactive peptides have been shown to affect cell membrane fluidity, which is an important indicator of the cell membrane structure and function. However, the underlying mechanism of egg white-derived bioactive peptide regulation of cell membrane fluidity has not been elucidated yet. The cell membrane fluidity was investigated by giant unilamellar vesicles in the present study. The results showed that peptides TCNW, ADWAK, ESIINF, VPIEGII, LVEEY, and WKLC connect to membranes through intermolecular interactions, such as hydrogen bonding and regulated membrane fluidity, in a concentration-dependent way. In addition, peptides prefer to localize in the hydrophobic core of the bilayers. This study provides a theoretical basis for analyzing the localization of egg white bioactive peptides in specific cell membrane regions and their influence on the cell membrane fluidity.

5.
Int J Biol Macromol ; 266(Pt 2): 131267, 2024 May.
Article in English | MEDLINE | ID: mdl-38556233

ABSTRACT

This study aims to develop ultrasound-assisted acid-induced egg white protein (EWP)-soy protein isolate (SPI) composite gels and to investigate the mechanistic relationship between the co-aggregation behavior of composite proteins and gel properties through aggregation kinetics monitored continuously by turbidity. The results showed that the inclusion of EWP caused the attenuation of gel properties and maximum aggregation (Amax) because EWP could aggregate with SPI at a higher rate (Kapp), which impeded the interaction between SPI and the formation of a continuous gelling network. In the EWP-dominated system, SPI with higher molecular weights also increased the fractal dimension of gels. Ultrasound improved properties of composite gels, especially the SPI-dominated system. After ultrasound treatment, the small, uniform size of co-aggregates and the decrease in potential led to an increase in the aggregation rate and formation of dense particles, consistent with an increase in gelation rate and texture properties. Excessively fast aggregation generated coarse chains and more pores. Still, the exposure of free sulfhydryl groups assisted the gel structure units to form a compact network through disulfide bonding. On the whole, the study could provide theoretical support for a deeper understanding on the interaction mechanism and gelation of composite proteins.


Subject(s)
Gels , Soybean Proteins , Gels/chemistry , Kinetics , Soybean Proteins/chemistry , Glycine max/chemistry , Ultrasonic Waves , Egg White/chemistry , Protein Aggregates , Egg Proteins/chemistry
6.
Molecules ; 29(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338486

ABSTRACT

Egg white proteins pose notable limitations in emulsion applications due to their inadequate wettability and interfacial instability. Polyphenol-driven alterations in proteins serve as an effective strategy for optimizing their properties. Herein, covalent and non-covalent complexes of egg white proteins-proanthocyanins were synthesized. The analysis of structural alterations, amino acid side chains and wettability was performed. The superior wettability (80.00° ± 2.23°) and rigid structure (2.95 GPa) of covalent complexes established favorable conditions for their utilization in emulsions. Furthermore, stability evaluation, digestion kinetics, free fatty acid (FFA) release kinetics, and correlation analysis were explored to unravel the impact of covalent and non-covalent modification on emulsion stability, dynamic digestion process, and interlinkages. Emulsion stabilized by covalent complex exhibited exceptional stabilization properties, and FFA release kinetics followed both first-order and Korsmeyer-Peppas models. This study offers valuable insights into the application of complexes of proteins-polyphenols in emulsion systems and introduces an innovative approach for analyzing the dynamics of the emulsion digestion process.


Subject(s)
Digestion , Fatty Acids, Nonesterified , Emulsions/chemistry , Fatty Acids, Nonesterified/metabolism , Egg Proteins , Particle Size
7.
J Agric Food Chem ; 72(8): 4100-4115, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38373195

ABSTRACT

Wound healing is a multiphase process with a complex repair mechanism; trauma-repairing products with safety and high efficiency have a great market demand. Egg white peptides (EWP) have various physiological regulatory functions and have been proven efficient in ameliorating skin damage. However, their underlying regulation mechanism has not been revealed. This study further evaluated the EWP ameliorating mechanism by conducting a full-thickness skin wound model. Results demonstrated that EWP administration significantly inhibited the expression of pro-inflammatory and shortened the inflammatory phase. Besides, EWP can accelerate the secretion of growth factors (PDGF, VEGF, and TGF-ß1) in skin tissue, significantly increasing the regeneration of granulation tissue and endothelium in the proliferation phase, thereby promoting wound healing. After 400 mg/kg EWP interventions for 13 days postoperation, the wound healing rate reached 90%. The combination of transcriptomic and proteomic analyses demonstrated the ameliorating efficiency effects of EWP on wound healing. EWP mainly participates in the functional network with the PI3K-AKT signaling pathway as the core to accelerate wound healing. These findings suggest a promising EWP-based strategy for accelerating wound healing.


Subject(s)
Proto-Oncogene Proteins c-akt , Wound Healing , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , Egg White , Cell Proliferation , Cell Movement , Peptides/pharmacology , Gene Expression Profiling
8.
Food Chem ; 442: 138448, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38245983

ABSTRACT

This study was oriented towards the impacts of unique interfacial networks, formed by glycosylated and non-glycosylated egg white proteins, on the characteristics of high internal phase Pickering emulsions (HIPPEs). Glycosylated egg white protein particles (EWPG) manifested a more compact protein tertiary structure and amplified surface hydrophobicity, forming durable coral-like networks at the oil-water interface. The non-glycosylated egg white protein particles (EWP) could form spherical cluster interfacial networks. Raman spectroscopy analysis illuminated that EWPG could exhibit better interactions with aliphatic amino acids via hydrogen bonds and hydrophobic interactions. The release of free fatty acid (FFA) from both HIPPEs followed the first-order kinetic model with a combination of diffusion. EWPG-stabilized HIPPEs demonstrated superior physical stability and cellular antioxidant activity. This research shed light on the promising prospects of HIPPEs as promising amphiphilic delivery systems with capabilities to co-deliver hydrophilic and hydrophobic nutraceuticals and amplify their intracellular biological potency.


Subject(s)
Antioxidants , Fatty Acids, Nonesterified , Emulsions/chemistry , Antioxidants/chemistry , Hydrophobic and Hydrophilic Interactions , Egg Proteins/chemistry , Particle Size
9.
Food Res Int ; 172: 113120, 2023 10.
Article in English | MEDLINE | ID: mdl-37689888

ABSTRACT

Natural multicomponent peptides with abundant bioactivity, varied sizes, and tunable interaction potential are available for rational designing novel self-assembled delivery carriers. Herein, we exploited zein-hyaluronic acid nanoparticles (Z-HA NPs) with a predetermined ordered structure as precursor templates to induce the self-assembly of egg white-derived peptides (EWDP) to generate stable spherical architectures for the enhancement of curcumin (Cur). The resulting Z-EWDP-HA NPs encapsulated hydrophobic Cur through robust hydrogen bonding and hydrophobic interactions with high encapsulation efficiency (97.38% at pH 7.0). The NPs presented superior Cur aqueous solubility, redispersibility, and photothermal stability. More importantly, the self-assembled EWDP could exert synergistic antioxidant activity with Cur and enhance the bioaccessibility of Cur. Meanwhile, the favorable biocompatibility and membrane affinity of EWDP further prolonged residence and time-controlled release feature of Cur in the small intestine. Precursor template-induced multicomponent peptides' self-assembly provides an efficient and controllable strategy for co-enhanced bioactivity and self-assembly capacity of peptides, which could dramatically broaden the functionalization of multicomponent peptides hydrolyzed from natural food proteins.


Subject(s)
Curcumin , Biological Availability , Egg White , Hydrogen Bonding , Peptides
10.
J Agric Food Chem ; 71(36): 13168-13180, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37639307

ABSTRACT

Impaired intestinal barrier function can impede the digestion and absorption of nutrients and cause a range of metabolic disorders, which are the main causes of intestinal disease. Evidence suggests that proper dietary protein intake can prevent and alleviate intestinal diseases. Egg white protein (EWP) has received considerable attention, because of its high protein digestibility and rich amino acid composition. Furthermore, bioactive peptides may have an increased repair effect due to their high degradation efficiency in the gut. In this study, we aimed to review the effects of EWP and its bioactive peptides on intestinal structural repair. The potential modulation mechanisms by which EWP and their peptides regulate the gut microbiota and intestinal barrier can be summarized as follows: (1) restoring the structure of the intestinal barrier to its intact form, (2) enhancing the intestinal immune system and alleviating the inflammatory response and oxidative damage, and (3) increasing the relative abundance of beneficial bacteria and metabolites. Further in-depth analysis of the coregulation of multiple signaling pathways by EWP is required, and the combined effects of these multiple mechanisms requires further evaluation in experimental models. Human trials can be considered to understand new directions for development.


Subject(s)
Gastrointestinal Microbiome , Humans , Dietary Proteins , Peptides/pharmacology , Egg Proteins , Amino Acids
11.
J Agric Food Chem ; 71(30): 11304-11319, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37486612

ABSTRACT

Food protein-derived multicomponent peptides (FPDMPs) are a natural blend of numerous peptides with various bioactivities and multiple active sites that can assume several energetically favorable conformations in solutions. The remarkable structural characteristics and functional attributes of FPDMPs make them promising codelivery carriers that can coassemble with different bioactive ingredients to induce multidimensional structures, such as fibrils, nanotubes, and nanospheres, thereby producing specific health benefits. This review offers a prospective analysis of FPDMPs-based self-assembly nanostructures, focusing on the mechanism of formation of self-assembled FPDMPs, the internal and external stimuli affecting peptide self-assembly, and their potential applications. In particular, we introduce the exciting prospect of constructing functional materials through precursor template-induced self-assembly of FPDMPs, which combine the bioactivity and self-assembly capacity of peptides and could dramatically broaden the functional utility of peptide-based materials.


Subject(s)
Nanospheres , Nanostructures , Nanotubes , Peptides/chemistry , Nanostructures/chemistry , Nanotubes/chemistry , Agriculture
12.
Food Funct ; 14(14): 6718-6729, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37409580

ABSTRACT

The Maillard reaction (MR) is inevitable in food processing and daily cooking, but whether the MR degree would affect the biological activity of the protein in vivo remains unknown. In this study, we used untargeted metabolomics techniques to explore the effects of two different levels of Maillard reaction products (MRPs) of ovalbumin (OVA) on metabolites in colitis mice. Studies have shown that MR could affect protein metabolites in vivo and MRPs of OVA could reduce the concentrations of IL-6 and IL-1ß and intestinal permeability. Metabolomics results showed that the degree of MR affected the abundance of oligopeptides and bile acids in vivo. This study revealed that MRPs could regulate the abundance of metabolites such as taurocholic acid and putrescine, and repair the intestinal barrier in colitis mice through signaling pathways such as secondary bile acid biosynthesis, bile secretion and ABC transporters. The investigation has significant implications for the digestion properties and metabolite regulation of MRPs in vivo, and also promotes the application of MRPs in functional foods.


Subject(s)
Colitis , Maillard Reaction , Animals , Mice , Ovalbumin , Colitis/chemically induced , Proteins/chemistry , Glycation End Products, Advanced/metabolism , Metabolomics
13.
J Agric Food Chem ; 71(23): 8894-8905, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37161945

ABSTRACT

The development and progression of colitis would detrimentally destroy the intestine barrier. However, there remains a paucity of evidence on whether ovalbumin (OVA) can be used as a nutritional food protein to repair the intestinal barrier. In this study, the repairing mechanism of OVA on intestinal barrier was thoroughly investigated by gut microbiota and untargeted metabolomics techniques. The findings demonstrated that OVA reduced intestinal permeability and restored mucin (0.75 ± 0.06) and tight junction (TJ) protein (0.67 ± 0.14) expression in colitis mice caused by 3% dextran sulfate sodium (DSS). In addition, the inflammation response and oxidative stress were also attenuated. The intake of OVA upregulated the abundance of Lactobacillaceae (7.60 ± 3.34%) and Akkermansiaceae (10.39 ± 5.97%). Furthermore, OVA upregulated the abundance of inosine (6.06 ± 0.36%), putrescine (4.14 ± 0.20%), and glycocholic acid (5.59 ± 0.23%) in colitis mice through ATP binding cassette (ABC) transporters and bile secretion pathways. In summary, our findings revealed that OVA could maintain intestinal health, which may provide crucial insights for preventing and treating intestinal diseases.


Subject(s)
Colitis , Gastrointestinal Microbiome , Mice , Animals , Ovalbumin/metabolism , Intestinal Mucosa/metabolism , Colitis/chemically induced , Colitis/genetics , Colitis/metabolism , Intestines , Metabolomics , Dextran Sulfate/adverse effects , Dextran Sulfate/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Colon/metabolism
14.
Food Chem ; 400: 134019, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36084589

ABSTRACT

Egg-white peptides (EWP, <1 kDa) have been shown to possess various bioactive properties. However, poor emulsification of EWP limits its application in functional foods. In this study, EWP aggregation induced by proanthocyanidins (PC) contributed to the improvement of emulsion properties. The two-step binding process of PC-EWP-EWP was confirmed by isothermal titration calorimetry, fluorescence spectroscopy, surface hydrophobicity, and Fourier transform infrared spectroscopy. We found that first EWP combines with PC via hydrogen bonding and hydrophobic interactions. Next, more EWPs bind to the EWP in PC-EWP via hydrogen bonding, thereby forming PC-EWP-EWP aggregates. The aggregates (PC to EWP ratio of 1:4) reduced the surface tension (6 %) and improved the contact angle (53 %). The co-adsorption of EWP and aggregates at the O/W interface improved the contact angle, protein adsorption rate, and emulsion stability. This study establishes EWP aggregates induced by PC as an effective emulsifier, thereby expanding the application fields of EWP.


Subject(s)
Egg Proteins , Proanthocyanidins , Egg Proteins/chemistry , Egg White , Emulsions , Peptides
15.
Food Chem ; 405(Pt A): 134874, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36370578

ABSTRACT

In this paper, the effects of hydroxyl radical-induced oxidation on structural characteristics, molecular interaction, functional properties, especially in gastric digestibility of egg white protein (EWP) were investigated. Altogether, oxidation enhanced EWP foaming stability, accompanied with even and loose arrangement bubbles by high interfacial and rheological properties. Additionally, structure and morphology characterization of hydrolysates as well as digestion kinetics results indicated the oxidized EWP had greater digestion degree and rate to release more free amino acids, along with hydrolysates composed by smaller globules and fibers. Briefly, oxidation might improve EWP functional and gastric digestive properties by providing more flexible conformation and strengthening non-covalent interactions. This work might provide an enlightening insight for enhancing protein functional properties and the nutrition of EWP via prompting amino acids release for the healthy food design.


Subject(s)
Amino Acids , Egg Proteins , Egg Proteins/chemistry , Oxidation-Reduction , Rheology , Amino Acids/metabolism , Hydroxyl Radical
16.
Food Res Int ; 162(Pt A): 111924, 2022 12.
Article in English | MEDLINE | ID: mdl-36461188

ABSTRACT

Membrane phase separation forms liquid-ordered (Lo) and liquid-disordered (Ld) phases and is involved in cellular processes and functions. Our previous study has confirmed that peptides can regulate phase separation by increasing the Lo phase. However, the specific mechanisms underlying the phase separation regulation of peptides remain poorly understood. This study aimed to explore the effect of soybean meal peptides on phase separation and illustrate the correlation between phase regulation and membrane localization of the peptides. Phase separation was studied by giant unilamellar vesicles (GUVs), and membrane localization of the peptides was detected by steady-state fluorescence quenching. Our results revealed that peptides YYK, CLA, and SLW enhanced the Lo phase while WLQ decreased the Lo phase. The localization in the membrane amphiphilic region of the peptides played a crucial role in their regulation of phase separation. The more localization of the peptides (YYK, CLA, and SLW) in the membrane amphiphilic region, the stronger the capacity to increase the Lo phase.


Subject(s)
Fabaceae , Glycine max , Unilamellar Liposomes , Membranes , Peptides
17.
Front Nutr ; 9: 1068877, 2022.
Article in English | MEDLINE | ID: mdl-36570170

ABSTRACT

Introduction: Fermented egg-milk peptides (FEMPs) could enhance the colon-intestinal barrier and upgrade the expression of zonula occludens-1 and mucin 2. Besides, the underlying biological mechanism and the targets FEMPs could regulate were analyzed in our study. Methods: Herein, the immunofluorescence technique and western blot were utilized to evaluate the repair of the intestinal barrier. Network pharmacology analysis and bioinformatics methods were performed to investigate the targets and pathways affected by FEMPs. Results and discussion: Animal experiments showed that FEMPs could restore intestinal damage and enhance the expression of two key proteins. The pharmacological results revealed that FEMPs could regulate targets related to kinase activity, such as AKT, CASP, RAF, and GSK. The above targets could interact with each other. GO analysis indicated that the targets regulated by FEMPs could participate in the kinase activity of the metabolic process. KEGG enrichment revealed that the core targets were enriched in pathways related to cell apoptosis and other important procedures. Molecular docking demonstrated that FEMPs could bind to the key target AKT via hydrogen bond interactions. Our study combined the experiment in vivo with the method in silico and investigated the interaction between peptides and targets in a pattern of multi-targets and multi-pathways, which offered a new perspective on the functional validation and potential application of bioactive peptides.

18.
Food Chem ; 394: 133496, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35728466

ABSTRACT

In this study, a nanocomposite was developed by introducing egg white-derived peptides (EWDP) into protein-polysaccharide complexes to trigger the self-assembly of EWDP for encapsulating curcumin (Cur) via the pH-driven method. In this system, EWDP could cooperate with protein-polysaccharide complexes to exert superior colloidal properties with excellent Cur aqueous solubility, redispersibility, and physical stability and act as a bioactivity amplifier to endow the delivery system with the synergistic antioxidant activity. This phenomenon was ascribed to the additional hydrophobic cavities, hydrogen bonding, and electrostatic interactions organized by EWDP. Additionally, the presence of EWDP could considerably boost the cellular antioxidant activity of Cur by decreasing reactive oxygen species (ROS) levels, improving free radical scavenging capacity, and recovering the activity of endogenous antioxidant enzymes. These findings might open up an avenue to reinforce lipophilic nutraceuticals' physicochemical properties and functionalities based on the co-assembly of food-derived peptides and protein-polysaccharide complexes.


Subject(s)
Curcumin , Nanoparticles , Antioxidants/chemistry , Curcumin/chemistry , Curcumin/pharmacology , Drug Carriers/chemistry , Egg White , Nanoparticles/chemistry , Particle Size , Peptides , Polysaccharides
19.
Food Chem ; 388: 133030, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35483286

ABSTRACT

This study aimed to establish binary protein system on egg white ovalbumin (OVA) -lysozyme (LYS), and investigated the relationship between co-aggregation and co-gelation. We focused on the formation of OVA-LYS complex, the typical thermo-dynamically favored coacervation process, in terms of gelling properties, microstructure and thermodynamics. Benefited from synergistic effects during co-gelation, the thermally induced gels of OVA-LYS complex formed at extremely low protein concentration (18 mg/mL) and showed higher storage modulus with increasing LYS concentration. Moreover, the rising particle size, reduced zeta potential, unordered secondary structure and strengthened protein chain were observed with the addition of LYS. Remarkably, the divalent ions enhanced thermodynamic stability of OVA-LYS complex, although the growth of aggregates units were prevented by ions at room temperature. ITC and molecular docking analyses revealed the binding affinity stoichiometry and combination phase, which were closely related to the decrease of minimum energy resulted from the formation of hydrogen bond.


Subject(s)
Egg White , Muramidase , Antiviral Agents , Gels/chemistry , Molecular Docking Simulation , Muramidase/chemistry , Ovalbumin/chemistry , Thermodynamics
20.
J Sci Food Agric ; 102(13): 5925-5934, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35437803

ABSTRACT

BACKGROUND: In this study, a safe and relatively stable γ-cyclodextrin-lysozyme (γ-CD-Lys) was synthesized using epichlorohydrin as the cross-linking agent, and curcumin was successfully encapsulated in γ-CD-Lys. RESULTS: The successful Lys grafting onto γ-CD can be demonstrated by a high grafting ratio (79.02%) and was further confirmed by Fourier transform infrared (FTIR) band shifts and the new signal obtained at δ 2.75 in proton nuclear magnetic resonance. The encapsulation efficiency value of γ-CD-Lys was 76.74%, and the successful encapsulation of curcumin into γ-CD-Lys was confirmed by crystal structure change, increased melting point, and FTIR band shifts. The intermolecular bonds results suggested that associative forces between curcumin and γ-CD-Lys were electrostatic interaction, hydrogen bonds interaction, and hydrophobic interaction. The designed nanoparticles had excellent stability at low pH and low salt concentration. The release rate of these nanoparticles was inhibited in simulated gastric conditions, whereas it increased significantly in intestinal media. Simulated gastrointestinal digestion experiments further confirmed that nanoparticles showed higher bioaccessibility (86.05%) compared with curcumin (58.82%). CONCLUSION: Overall, our study showed that the nanoparticles were highly promising for delivering curcumin because of their enhanced functional attributes and stabilization in acid or low salt environments. Also, it was an excellent wall material for targeting hydrophobic bioactive compounds in the intestinal tract via oral administration. © 2022 Society of Chemical Industry.


Subject(s)
Curcumin , Nanoparticles , gamma-Cyclodextrins , Curcumin/chemistry , Delayed-Action Preparations , Drug Carriers/chemistry , Muramidase , Nanoparticles/chemistry , Particle Size , gamma-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...