Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 39(48): 16994-17008, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38050682

ABSTRACT

During electrocatalytic water splitting, the management of bubbles possesses great importance to reduce the overpotential and improve the stability of the electrode. Bubble evolution is accomplished by nucleation, growth, and detachment. The expanding nucleation sites, decreasing bubble size, and timely detachment of bubbles from the electrode surface are key factors in bubble management. Recently, the surface engineering of electrodes has emerged as a promising strategy for bubble management in practical water splitting due to its reliability and efficiency. In this review, we start with a discussion of the bubble behavior on the electrodes during water splitting. Then we summarize recent progress in the management of bubbles from the perspective of surface physical (electrocatalytic surface morphology) and surface chemical (surface composition) considerations, focusing on the surface texture design, three-dimensional construction, wettability coating technology, and functional group modification. Finally, we present the principles of bubble management, followed by an insightful perspective and critical challenges for further development.

2.
Curr Top Med Chem ; 12(21): 2452-7, 2012.
Article in English | MEDLINE | ID: mdl-23409741

ABSTRACT

At the most basic level, the Transcranial Magnetic Stimulation(TMS) is a neuro-scientific tool that exerts its action by influencing the neo-cortical functions. However, in-spite of so many well-evidenced roles of TMS in neuropsychiatric conditions, its exact mechanism of action remains to be known. More intriguing are its therapeutic effects in Schizophrenia at the Cerebral-level. In this review, we adopt a neuro-imaging approach for this exploration. We review the present literature for the studies in Schizophrenia which have used a combination of rTMS with 1) Electroenchephalogram (EEG) 2)The functional Magnetic Resonance Imaging (fMRI) and the 3) Positron Emission Tomography (PET)/ Single-Photon Emission Computed Tomography. The TMS-EEG combination provides direct effects of TMS on the electro- magnetic field (EMF) of brain. The TMS-fMRI/PET/SPECT combinations are very effective in exploring the functional connectivity in brains of Schizophrenia patients as well as in performing rTMS guided neuro-navigation. Our review suggests that TMS combined with other neuroimaging modalities are needed for a better clarification of its neural actions.


Subject(s)
Neuroimaging/methods , Schizophrenia/physiopathology , Transcranial Magnetic Stimulation/methods , Electroencephalography , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , Schizophrenia/therapy , Tomography, Emission-Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...