Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(21): e202401987, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38526053

ABSTRACT

The in-depth understanding of the composition-property-performance relationship of solid electrolyte interphase (SEI) is the basis of developing a reliable SEI to stablize the Zn anode-electrolyte interface, but it remains unclear in rechargeable aqueous zinc ion batteries. Herein, a well-designed electrolyte based on 2 M Zn(CF3SO3)2-0.2 M acrylamide-0.2 M ZnSO4 is proposed. A robust polymer (polyacrylamide)-inorganic (Zn4SO4(OH)6.xH2O) hybrid SEI is in situ constructed on Zn anodes through controllable polymerization of acrylamide and coprecipitation of SO4 2- with Zn2+ and OH-. For the first time, the underlying SEI composition-property-performance relationship is systematically investigated and correlated. The results showed that the polymer-inorganic hybrid SEI, which integrates the high modulus of the inorganic component with the high toughness of the polymer ingredient, can realize high reversibility and long-term interfacial stability, even under ultrahigh areal current density and capacity (30 mA cm-2~30 mAh cm-2). The resultant Zn||NH4V4O10 cell also exhibits excellent cycling stability. This work will provide a guidance for the rational design of SEI layers in rechargeable aqueous zinc ion batteries.

2.
Chem Commun (Camb) ; 59(79): 11871-11874, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37723944

ABSTRACT

The high-density amorphous phases (HDAs) of bimetallic zeolitic imidazolate frameworks (Zn/Co-ZIF-4) were prepared. The temperature dependence of the isobaric heat capacity (Cp) of ZIF-4 HDAs was measured to determine the glass transition temperature (Tg) of HDAs. The Tg non-linearly decreases with the molar ratio R, where R is Co/(Co + Zn), indicating the presence of a mixed-metal node effect. This effect arises from the non-linear increase of the degree of configurational freedom in the HDA as R increases. The degree of configurational freedom is inversely correlated with the network connectivity, which is, in turn, affected by variations in the MN4 (M: Zn or Co; N: nitrogen) tetrahedral symmetry in the ZIF-4 HDA. Overall, this work offers valuable insights into the glass transition of metal-organic frameworks.

3.
Nanomicro Lett ; 15(1): 81, 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37002511

ABSTRACT

Although their cost-effectiveness and intrinsic safety, aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction, Zn corrosion and passivation, and Zn dendrite formation on the anode. Despite numerous strategies to alleviate these side reactions have been demonstrated, they can only provide limited performance improvement from a single aspect. Herein, a triple-functional additive with trace amounts, ammonium hydroxide, was demonstrated to comprehensively protect zinc anodes. The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes. Moreover, cationic NH4+ can preferentially adsorb on the Zn anode surface to shield the "tip effect" and homogenize the electric field. Benefitting from this comprehensive protection, dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized. Besides, improved electrochemical performances can also be achieved in Zn//MnO2 full cells by taking the advantages of this triple-functional additive. This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective.

4.
Angew Chem Int Ed Engl ; 62(16): e202300608, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36809576

ABSTRACT

The electrochemical effect of isotope (EEI) of water is introduced in the Zn-ion batteries (ZIBs) electrolyte to deal with the challenge of severe side reactions and massive gas production. Due to the low diffusion and strong coordination of ions in D2 O, the possibility of side reactions is decreased, resulting in a broader electrochemically stable potential window, less pH change, and less zinc hydroxide sulfate (ZHS) generation during cycling. Moreover, we demonstrate that D2 O eliminates the different ZHS phases generated by the change of bound water during cycling because of the consistently low local ion and molecule concentration, resulting in a stable interface between the electrode and electrolyte. The full cells with D2 O-based electrolyte demonstrated more stable cycling performance which displayed ∼100 % reversible efficiencies after 1,000 cycles with a wide voltage window of 0.8-2.0 V and 3,000 cycles with a normal voltage window of 0.8-1.9 V at a current density of 2 A g-1 .

5.
Adv Sci (Weinh) ; 10(8): e2206437, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36646499

ABSTRACT

The last 20 years have seen many publications investigating porous solids for gas adsorption and separation. The abundance of adsorbent materials (this work identifies 1608 materials for CO2 /N2 separation alone) provides a challenge to obtaining a comprehensive view of the field, identifying leading design strategies, and selecting materials for process modeling. In 2021, the empirical bound visualization technique was applied, analogous to the Robeson upper bound from membrane science, to alkane/alkene adsorbents. These bound visualizations reveal that adsorbent materials are limited by design trade-offs between capacity, selectivity, and heat of adsorption. The current work applies the bound visualization to adsorbents for a wider range of gas pairs, including CO2 , N2 , CH4 , H2 , Xe, O2 , and Kr. How this visual tool can identify leading materials and place new material discoveries in the context of the wider field is presented. The most promising current strategies for breaking design trade-offs are discussed, along with reproducibility of published adsorption literature, and the limitations of bound visualizations. It is hoped that this work inspires new materials that push the bounds of traditional trade-offs while also considering practical aspects critical to the use of materials on an industrial scale such as cost, stability, and sustainability.

6.
Angew Chem Int Ed Engl ; 62(5): e202212695, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36375075

ABSTRACT

Aqueous zinc-ion batteries have drawn increasing attention due to the intrinsic safety, cost-effectiveness and high energy density. However, parasitic reactions and non-uniform dendrite growth on the Zn anode side impede their application. Herein, a multifunctional additive, ammonium dihydrogen phosphate (NHP), is introduced to regulate uniform zinc deposition and to suppress side reactions. The results show that the NH4 + tends to be preferably absorbed on the Zn surface to form a "shielding effect" and blocks the direct contact of water with Zn. Moreover, NH4 + and (H2 PO4 )- jointly maintain pH values of the electrode-electrolyte interface. Consequently, the NHP additive enables highly reversible Zn plating/stripping behaviors in Zn//Zn and Zn//Cu cells. Furthermore, the electrochemical performances of Zn//MnO2 full cells and Zn//active carbon (AC) capacitors are improved. This work provides an efficient and general strategy for modifying Zn plating/stripping behaviors and suppressing side reactions in mild aqueous electrolyte.

7.
Front Integr Neurosci ; 16: 921605, 2022.
Article in English | MEDLINE | ID: mdl-35898442

ABSTRACT

Background: Mental health has become a major public health issue worldwide. Biological and epidemiological studies have suggested that diet and physical fitness play a role in the prevention or cure of mental disorders. However, further research is required to elucidate the relationship between diet, physical fitness, and mental health. The study aims to provide a theoretical basis for promoting an adolescent healthy lifestyle and preventing mental problems by exploring the relationship between physical fitness, calcium intake, calorie intake, and adolescent mental health. Methods: A cross-sectional study of a sample of adolescents (N = 253, 12-13 years) was conducted. The study involved adolescents from three middle schools in Central Jiangsu Province, including 136 boys and 117 girls. Weight, height, and body mass index were measured. Physical fitness was scored using the Chinese National Student Physical Fitness Standard. Diet data were collected using a weighed 7-day food diary to estimate energy intake and dietary calcium intake. The mental health status of the participants was assessed using the Chinese Middle School Student Mental Health Scale. A T-test and analysis of variance were used to analyze the differences of variables between different genders and body mass index, and Pearson correlation and stepwise multiple regression were used to explore the relationship between physical fitness, dietary intake, and mental health. Results: The height (165.13 ± 8.07), weight (55.24 ± 13.00), and strength quality (64.93 ± 21.66) of boys are higher than those of girls (161.67 ± 6.44,48.99 ± 8.97, 58.40 ± 23.75, P < 0.05), and the flexibility quality (74.59 ± 14.75) of girls is higher than that of boys (68.30 ± 20.84) (P < 0.05). There were significant differences in the total scores of speed and physical fitness (F values were 4.02187.73, 3.07, 5.95, 10.33, and 9.52, respectively, P < 0.05). There was a significant positive correlation between calcium intake, cardiopulmonary fitness, and mental health (r = 0.276, P < 0.01; r = 0.159, P < 0.05). Calcium intake and cardiopulmonary fitness could explain 8.4% of the changes in the mental health of adolescents aged 12-13(ΔR2 = 0.084, P < 0.05). Conclusion: Adequate calcium intake and the improvement of cardiopulmonary fitness in adolescents aged 12-13 are essential for the good development of their mental health. Future research in this field should examine the prospective associations between multiple measures of physical fitness composition and other nutrients ingested and mental health outcomes, as well as intervention studies that seek to provide evidence of causality.

8.
Dalton Trans ; 51(15): 5997-6006, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35352083

ABSTRACT

Metal-organic framework (MOF) materials with tunable porous morphology, controlled crystalline structure, various compositions, and high specific surface area are widely used as precursors to synthesize electrocatalysts for water splitting, which is beneficial for improving their oxygen evolution reaction (OER) performance. Using ZIF-67 as a Co source and Cu-BTC as a Cu source, hexagonal MOF-derived CuCoO2 (MOF-CCO) nanocrystals with the size of ∼288 nm were prepared through a one-step solvothermal method. The influence of the content of the precursor solvents (absolute ethanol and deionized water), reaction temperature, mass ratio of reactants, NaOH addition, and reactant concentration of precursors on the structure and morphology of the products was investigated. The optimal CuCoO2 nanocrystals (MOF-CCO1) around 288 nm present the highest OER activity, such as a low overpotential of 364.7 mV at 10 mA cm-2, a small Tafel slope of 64.1 mV dec-1, and attractive durability in 1.0 M KOH solution. The XPS results showed that the higher catalytic efficiency of MOF-CCO1 nanocrystals could be due to the oxygen vacancies caused by lattice oxygen loss, the increase of OH- content on the surface, and the synergistic effect of Cu2+/Cu+ and Co2+/Co3+ redox pairs. Finally, a possible OER mechanism for MOF-CCO nanocrystals of water splitting was proposed. This study provides a new approach for the preparation of delafossite nanomaterials and for the improvement of their OER performances.

9.
J Colloid Interface Sci ; 581(Pt B): 698-708, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32814193

ABSTRACT

Surface-enhanced Raman scattering (SERS) induced by largely enhanced electromagnetic (EM) field provides a solid and promising avenue for ultrasensitive molecular detection. Here, a confined Gaussian-distributed EM field for SERS fiber probe with two influencing factors (localized surface plasmon resonance (LSPR) of silver and waveguide propagation of optical fiber) are proposed for the first time. SERS fiber probes with high sensitivity and good reproducibility were synthesized via a novel SnCl2 sensitization aided solvothermal method. The influencing factors and EM field distribution are investigated experimentally and theoretically. The LSPR-induced EM enhancement is observed. By introducing a sensitization procedure, silver particles show smaller sizes and narrower interparticle gaps, significantly influencing the LSPR and EM enhancement of the SERS fiber probe. Moreover, a unique waveguide-propagation-induced EM enhancement is brought up. Waveguide propagation modes of optical fibers influence the intensity and enhancement area of EM field. Further, the EM field distribution of SERS fiber probe is studied. It exhibits a concentrically-increased intensity gradient that is confined in core area with maximum enhancement at fiber core center. This confined Gaussian-distributed configuration of EM field on SERS fiber probe facet is induced by the LSPR of plasmons and waveguide propagation of optical fiber.

10.
Inorg Chem ; 59(14): 9889-9899, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32631048

ABSTRACT

It is urgent to explore cost-effective, high-efficiency, and durable electrocatalysts for electrochemical water splitting due to the rapidly increasing energy consumption. In this work, we successfully synthesize Ca-doped CuCoO2 nanosheets (CCCO-P NSs) with different Ca2+ dopants (such as 3, 5, and 10 atom %) by a surfactant-modified hydrothermal reaction with polyvinylpyrrolidone (PVP) addition. The oxygen evolution reaction (OER) performances of these CCCO-P NSs in 1.0 M KOH are investigated. An optimal nickel foam supported CCCO-P2 NSs (Ni@CCCO-P2, 5 atom % Ca-doped) electrode requires low overpotential of 470 mV to afford the current density of 10 mA cm-2 and small Tafel slope of 96.5 mV dec-1. Furthermore, the Ni@CCCO-P2 electrode displays outstanding long-term stability during the galvanostatic OER electrolysis for 18 h with a little degradation of 32 mV. The improvement of OER performances for CCCO-P2 NSs could be attributed to their higher active surface area, more active sites (Co vacancies defect and Co3+/Co4+ redox pairs), and higher electrical conductivity. This work highlights the joint effect of surfactant and Ca doping for preparing CuCoO2 with nanosheet-like morphology and porous crystal structure, which is favorable for enhancing their OER performance.

11.
Dalton Trans ; 48(36): 13753-13759, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31475701

ABSTRACT

In this work, we present the hydrothermal synthesis of delafossite oxide Ca-doped CuCoO2 (CCCaO) nanosheets at a low temperature of 100 °C. The crystal phase, morphology and chemical composition of these CuCoO2 (CCO) based samples were comprehensively characterized by powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The size of CCCaO nanosheets decreased with increasing Ca dopant concentration, and the optimized CCCaO nanosheets (∼490 nm in lateral size and ∼15 nm in thickness) were much smaller than CCO nanocrystals (∼540 nm in lateral size and 85 nm in thickness). The specific surface area of these CCO based samples increased with increasing Ca content, and the optimized CCCaO nanosheets present a high BET surface area of 28 m2 g-1. XPS and Raman spectroscopy analyses indicate Ca2+ dopant substitution on the Cu+ site in CCCaO nanosheets. Moreover, the effects of Ca2+ doping on the optical and electrical properties of these CCO based samples were further studied. The optical properties measured at room temperature show high absorbability (up to 90%) in the ultraviolet-visible-near infrared (UV-VIS-NIR) region, and the indirect band gap shows a significant blue-shift with increasing Ca2+ concentration. The CCO nanocrystals possess a higher electrical conductivity than the CCCaO nanosheets, and present good conductivities of around 12.81, 4.47 and 0.69 s m-1 for the CCO and CCCaO samples at room temperature. The facile fabrication process, tunable crystallite sizes, and excellent optical absorption and electrical properties of these CCO based nanomaterials are encouraging for the development of future applications in photoelectric devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...