Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35829674

ABSTRACT

Despite the superior optoelectronic properties of quasi-two-dimensional (quasi-2D) Ruddlesden-Popper halide perovskites, the inhomogeneous distribution of mixed phases result in inefficient energy transfer and multiple emission peaks. Herein, the insufficient energy funneling process at the high-energy phase is almost completely suppressed and the excitonic understanding of gain nature is studied in the energy funneling managed quasi-2D perovskite via introducing poly(vinyl pyrrolidone) (PVP) additive. The energy transfer process is facilitated from 0.37 to 0.26 ps after introducing the PVP additive, accelerating the exciton accumulation in the emissive state, and increasing the ratio of the high-dimensional phase for enhancing radiative emission. The gain lifetime is promoted to be as fast as 28 ps to outcompete nonradiative recombination during the build-up of population inversion. Simultaneously, the net gain coefficient is increased by more than twofold that of the pristine perovskite film. Owing to the remarkable gain properties, room-temperature amplified spontaneous emission is realized with a low threshold of 11.3 µJ/cm2, 4 times lower than 43 µJ/cm2 of the pristine film. Our findings suggest that the PVP-treated quasi-2D perovskite shows great promise for high-performance laser devices.

2.
Nanoscale ; 12(12): 6644-6650, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32186312

ABSTRACT

Strain engineering provides an efficient strategy to modulate the fundamental properties of semiconducting structures for use in functional electronic and optoelectronic devices. Here, we report on how the strain affects the bandgap, optical anisotropy and stability of two-dimensional (2D) perovskite (BA)2(MA)n-1PbnI3n+1 (n = 1-3) microplates, using photoluminescence spectroscopy. Upon applying external strain, the bandgap decreases at a rate of -5.60/-2.74/-1.38 meV per % for n = 1, 2, and 3 2D perovskites, respectively. This change of the bandgap can be ascribed to the distortion of the octahedra (Pb-I bond contraction) in 2D perovskites, supported by a study on emission anisotropy, which increases with the increase of strain. In addition, the external strain can significantly deteriorate the stability of 2D perovskites due to the strain induced distortion which would make the penetration of moisture and oxygen into the perovskite microplates easier, resulting in much faster degradation rates. Our findings not only provide insights into the design and optimization of functional devices, but also provide a new approach to improve the stability of 2D perovskite based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...