Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 40(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38341662

ABSTRACT

MOTIVATION: RNA threading aims to identify remote homologies for template-based modeling of RNA 3D structure. Existing RNA alignment methods primarily rely on secondary structure alignment. They are often time- and memory-consuming, limiting large-scale applications. In addition, the accuracy is far from satisfactory. RESULTS: Using RNA secondary structure and sequence profile, we developed a novel RNA threading algorithm, named RNAthreader. To enhance the alignment process and minimize memory usage, a novel approach has been introduced to simplify RNA secondary structures into compact diagrams. RNAthreader employs a two-step methodology. Initially, integer programming and dynamic programming are combined to create an initial alignment for the simplified diagram. Subsequently, the final alignment is obtained using dynamic programming, taking into account the initial alignment derived from the previous step. The benchmark test on 80 RNAs illustrates that RNAthreader generates more accurate alignments than other methods, especially for RNAs with pseudoknots. Another benchmark, involving 30 RNAs from the RNA-Puzzles experiments, exhibits that the models constructed using RNAthreader templates have a lower average RMSD than those created by alternative methods. Remarkably, RNAthreader takes less than two hours to complete alignments with ∼5000 RNAs, which is 3-40 times faster than other methods. These compelling results suggest that RNAthreader is a promising algorithm for RNA template detection. AVAILABILITY AND IMPLEMENTATION: https://yanglab.qd.sdu.edu.cn/RNAthreader.


Subject(s)
RNA , Software , RNA/chemistry , Sequence Alignment , Algorithms , Protein Structure, Secondary
2.
Nat Commun ; 14(1): 7266, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945552

ABSTRACT

RNA 3D structure prediction is a long-standing challenge. Inspired by the recent breakthrough in protein structure prediction, we developed trRosettaRNA, an automated deep learning-based approach to RNA 3D structure prediction. The trRosettaRNA pipeline comprises two major steps: 1D and 2D geometries prediction by a transformer network; and 3D structure folding by energy minimization. Benchmark tests suggest that trRosettaRNA outperforms traditional automated methods. In the blind tests of the 15th Critical Assessment of Structure Prediction (CASP15) and the RNA-Puzzles experiments, the automated trRosettaRNA predictions for the natural RNAs are competitive with the top human predictions. trRosettaRNA also outperforms other deep learning-based methods in CASP15 when measured by the Z-score of the Root-Mean-Square Deviation. Nevertheless, it remains challenging to predict accurate structures for synthetic RNAs with an automated approach. We hope this work could be a good start toward solving the hard problem of RNA structure prediction with deep learning.


Subject(s)
Proteins , RNA , Humans , RNA/genetics , Nucleic Acid Conformation , Proteins/genetics
3.
Bioinformatics ; 38(4): 962-969, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34791040

ABSTRACT

MOTIVATION: Significant progress has been achieved in distance-based protein folding, due to improved prediction of inter-residue distance by deep learning. Many efforts are thus made to improve distance prediction in recent years. However, it remains unknown what is the best way of objectively assessing the accuracy of predicted distance. RESULTS: A total of 19 metrics were proposed to measure the accuracy of predicted distance. These metrics were discussed and compared quantitatively on three benchmark datasets, with distance and structure models predicted by the trRosetta pipeline. The experiments show that a few metrics, such as distance precision, have a high correlation with the model accuracy measure TM-score (Pearson's correlation coefficient >0.7). In addition, the metrics are applied to rank the distance prediction groups in CASP14. The ranking by our metrics coincides largely with the official version. These data suggest that the proposed metrics are effective for measuring distance prediction. We anticipate that this study paves the way for objectively monitoring the progress of inter-residue distance prediction. A web server and a standalone package are provided to implement the proposed metrics. AVAILABILITY AND IMPLEMENTATION: http://yanglab.nankai.edu.cn/APD. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Proteins , Proteins/chemistry , Computational Biology , Protein Folding
4.
Adv Sci (Weinh) ; 8(24): e2102592, 2021 12.
Article in English | MEDLINE | ID: mdl-34719864

ABSTRACT

The accuracy of de novo protein structure prediction has been improved considerably in recent years, mostly due to the introduction of deep learning techniques. In this work, trRosettaX, an improved version of trRosetta for protein structure prediction is presented. The major improvement over trRosetta consists of two folds. The first is the application of a new multi-scale network, i.e., Res2Net, for improved prediction of inter-residue geometries, including distance and orientations. The second is an attention-based module to exploit multiple homologous templates to increase the accuracy further. Compared with trRosetta, trRosettaX improves the contact precision by 6% and 8% on the free modeling targets of CASP13 and CASP14, respectively. A preliminary version of trRosettaX is ranked as one of the top server groups in CASP14's blind test. Additional benchmark test on 161 targets from CAMEO (between Jun and Sep 2020) shows that trRosettaX achieves an average TM-score ≈0.8, outperforming the top groups in CAMEO. These data suggest the effectiveness of using the multi-scale network and the benefit of incorporating homologous templates into the network. The trRosettaX algorithm is incorporated into the trRosetta server since Nov 2020. The web server, the training and inference codes are available at: https://yanglab.nankai.edu.cn/trRosetta/.


Subject(s)
Computational Biology/methods , Deep Learning , Models, Molecular , Neural Networks, Computer , Protein Conformation , Sequence Analysis, Protein/methods , Datasets as Topic
5.
Nat Protoc ; 16(12): 5634-5651, 2021 12.
Article in English | MEDLINE | ID: mdl-34759384

ABSTRACT

The trRosetta (transform-restrained Rosetta) server is a web-based platform for fast and accurate protein structure prediction, powered by deep learning and Rosetta. With the input of a protein's amino acid sequence, a deep neural network is first used to predict the inter-residue geometries, including distance and orientations. The predicted geometries are then transformed as restraints to guide the structure prediction on the basis of direct energy minimization, which is implemented under the framework of Rosetta. The trRosetta server distinguishes itself from other similar structure prediction servers in terms of rapid and accurate de novo structure prediction. As an illustration, trRosetta was applied to two Pfam families with unknown structures, for which the predicted de novo models were estimated to have high accuracy. Nevertheless, to take advantage of homology modeling, homologous templates are used as additional inputs to the network automatically. In general, it takes ~1 h to predict the final structure for a typical protein with ~300 amino acids, using a maximum of 10 CPU cores in parallel in our cluster system. To enable large-scale structure modeling, a downloadable package of trRosetta with open-source codes is available as well. A detailed guidance for using the package is also available in this protocol. The server and the package are available at https://yanglab.nankai.edu.cn/trRosetta/ and https://yanglab.nankai.edu.cn/trRosetta/download/ , respectively.


Subject(s)
Amino Acids/chemistry , Computational Biology/methods , Proteins/chemistry , Software , Amino Acid Sequence , Internet , Molecular Dynamics Simulation , Neural Networks, Computer , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Thermodynamics
6.
Bioinformatics ; 36(7): 2119-2125, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31790141

ABSTRACT

MOTIVATION: Threading is one of the most effective methods for protein structure prediction. In recent years, the increasing accuracy in protein contact map prediction opens a new avenue to improve the performance of threading algorithms. Several preliminary studies suggest that with predicted contacts, the performance of threading algorithms can be improved greatly. There is still much room to explore to make better use of predicted contacts. RESULTS: We have developed a new contact-assisted threading algorithm named CATHER using both conventional sequential profiles and contact map predicted by a deep learning-based algorithm. Benchmark tests on an independent test set and the CASP12 targets demonstrated that CATHER made significant improvement over other methods which only use either sequential profile or predicted contact map. Our method was ranked at the Top 10 among all 39 participated server groups on the 32 free modeling targets in the blind tests of the CASP13 experiment. These data suggest that it is promising to push forward the threading algorithms by using predicted contacts. AVAILABILITY AND IMPLEMENTATION: http://yanglab.nankai.edu.cn/CATHER/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computational Biology , Sequence Analysis, Protein , Algorithms , Proteins , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...