Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220058, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37150200

ABSTRACT

Interactions between the upper ocean and air-ice-ocean fluxes in the Southern Ocean play a critical role in global climate by impacting the overturning circulation and oceanic heat and carbon uptake. Remote and challenging conditions have led to sparse observational coverage, while ongoing field programmes often fail to collect sufficient information in the right place or at the time-space scales required to constrain the variability occurring in the coupled ocean-atmosphere system. Only within the last 10 years have we been able to directly observe and assess the role of the fine-scale ocean and rapidly evolving atmospheric marine boundary layer on the upper limb of the Southern Ocean's overturning circulation. This review summarizes advances in mechanistic understanding, arising in part from observational programmes using autonomous platforms, of the fine-scale processes (1-100 km, hours-seasons) influencing the Southern Ocean mixed layer and its variability. We also review progress in observing the ocean interior connections and the coupled interactions between the ocean, atmosphere and cryosphere that moderate air-sea fluxes of heat and carbon. Most examples provided are for the ice-free Southern Ocean, while major challenges remain for observing the ice-covered ocean. We attempt to elucidate contemporary research gaps and ongoing/future efforts needed to address them. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

2.
Philos Trans A Math Phys Eng Sci ; 381(2249): 20220068, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37150201

ABSTRACT

Quantifying the strength and efficiency of the Southern Ocean biological carbon pump (BCP) and its response to predicted changes in the Earth's climate is fundamental to our ability to predict long-term changes in the global carbon cycle and, by extension, the impact of continued anthropogenic perturbation of atmospheric CO2. There is little agreement, however, in climate model projections of the sensitivity of the Southern Ocean BCP to climate change, with a lack of consensus in even the direction of predicted change, highlighting a gap in our understanding of a major planetary carbon flux. In this review, we summarize relevant research that highlights the important role of fine-scale dynamics (both temporal and spatial) that link physical forcing mechanisms to biogeochemical responses that impact the characteristics of the seasonal cycle of phytoplankton and by extension the BCP. This approach highlights the potential for integrating autonomous and remote sensing observations of fine scale dynamics to derive regionally optimized biogeochemical parameterizations for Southern Ocean models. Ongoing development in both the observational and modelling fields will generate new insights into Southern Ocean ecosystem function for improved predictions of the sensitivity of the Southern Ocean BCP to climate change. This article is part of a discussion meeting issue 'Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities'.

3.
Nat Commun ; 13(1): 158, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013282

ABSTRACT

The subpolar Southern Ocean is a critical region where CO2 outgassing influences the global mean air-sea CO2 flux (FCO2). However, the processes controlling the outgassing remain elusive. We show, using a multi-glider dataset combining FCO2 and ocean turbulence, that the air-sea gradient of CO2 (∆pCO2) is modulated by synoptic storm-driven ocean variability (20 µatm, 1-10 days) through two processes. Ekman transport explains 60% of the variability, and entrainment drives strong episodic CO2 outgassing events of 2-4 mol m-2 yr-1. Extrapolation across the subpolar Southern Ocean using a process model shows how ocean fronts spatially modulate synoptic variability in ∆pCO2 (6 µatm2 average) and how spatial variations in stratification influence synoptic entrainment of deeper carbon into the mixed layer (3.5 mol m-2 yr-1 average). These results not only constrain aliased-driven uncertainties in FCO2 but also the effects of synoptic variability on slower seasonal or longer ocean physics-carbon dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...