Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ISME J ; 12(9): 2278-2291, 2018 09.
Article in English | MEDLINE | ID: mdl-29899506

ABSTRACT

High-throughput sequencing of ocean biomes has revealed vast eukaryotic microbial diversity, a significant proportion of which remains uncharacterized. Here we use a temporal approach to understanding eukaryotic diversity at the Scripps Pier, La Jolla, California, USA, via high-throughput amplicon sequencing of the 18S rRNA gene, the abundances of both Synechococcus and Synechococcus grazers, and traditional oceanographic parameters. We also exploit our ability to track operational taxonomic units (OTUs) temporally to evaluate the ability of 18S sequence-based OTU assignments to meaningfully reflect ecological dynamics. The eukaryotic community is highly dynamic in terms of both species richness and composition, although proportional representation of higher-order taxa remains fairly consistent over time. Synechococcus abundance fluctuates throughout the year. OTUs unique to dates of Synechococcus blooms and crashes or enriched in Synechococcus addition incubation experiments suggest that the prasinophyte Tetraselmis sp. and Gymnodinium-like dinoflagellates are likely Synechococcus grazers under certain conditions, and may play an important role in their population fluctuations.


Subject(s)
Biodiversity , Eukaryota/classification , Ecosystem , Eukaryota/genetics , Eukaryota/isolation & purification , High-Throughput Nucleotide Sequencing , Pacific Ocean , RNA, Ribosomal, 18S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Synechococcus/growth & development
2.
J Eukaryot Microbiol ; 56(5): 413-20, 2009.
Article in English | MEDLINE | ID: mdl-19737193

ABSTRACT

We investigated feeding by phototrophic red-tide dinoflagellates on the ubiquitous diatom Skeletonema costatum to explore whether dinoflagellates are able to feed on S. costatum, inside the protoplasm of target dinoflagellate cells observed under compound microscope, confocal microscope, epifluorescence microscope, and transmission electron microscope (TEM) after adding living and fluorescently labeled S. costatum (FLSc). To explore effects of dinoflagellate predator size on ingestion rates of S. costatum, we measured ingestion rates of seven dinoflagellates at a single prey concentration. In addition, we measured ingestion rates of the common phototrophic dinoflagellates Prorocentrum micans and Gonyaulax polygramma on S. costatum as a function of prey concentration. We calculated grazing coefficients by combining field data on abundances of P. micans and G. polygramma on co-occurring S. costatum with laboratory data on ingestion rates obtained in the present study. All phototrophic dinoflagellate predators tested (i.e. Akashiwo sanguinea, Amphidinium carterae, Alexandrium catenella, Alexandrium tamarense, Cochlodinium polykrikoides, G. polygramma, Gymnodinium catenatum, Gymnodinium impudicum, Heterocapsa rotundata, Heterocapsa triquetra, Lingulodinium polyedrum, Prorocentrum donghaiense, P. micans, Prorocentrum minimum, Prorocentrum triestinum, and Scrippsiella trochoidea) were able to ingest S. costatum. When mean prey concentrations were 170-260 ng C/ml (i.e. 6,500-10,000 cells/ml), the ingestion rates of G. polygramma, H. rotundata, H. triquetra, L. polyedrum, P. donghaiense, P. micans, and P. triestinum on S. costatum (0.007-0.081 ng C/dinoflagellate/d [0.2-3.0 cells/dinoflagellate/d]) were positively correlated with predator size. With increasing mean prey concentration of ca 1-3,440 ng C/ml (40-132,200 cells/ml), the ingestion rates of P. micans and G. polygramma on S. costatum continuously increased. At the given prey concentrations, the maximum ingestion rates of P. micans and G. polygramma on S. costatum (0.344-0.345 ng C/grazer/d; 13 cells/grazer/d) were almost the same. The maximum clearance rates of P. micans and G. polygramma on S. costatum were 0.165 and 0.020 microl/grazer/h, respectively. The calculated grazing coefficients of P. micans and G. polygramma on co-occurring S. costatum were up to 0.100 and 0.222 h, respectively (i.e. up to 10% and 20% of S. costatum populations were removed by P. micans and G. polygramma populations in 1 h, respectively). Our results suggest that P. micans and G. polygramma sometimes have a considerable grazing impact on populations of S. costatum.


Subject(s)
Diatoms , Dinoflagellida/physiology , Feeding Behavior , Animals , Dinoflagellida/chemistry , Dinoflagellida/ultrastructure , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Fluorescence
3.
J Eukaryot Microbiol ; 51(5): 563-9, 2004.
Article in English | MEDLINE | ID: mdl-15537091

ABSTRACT

We first reported here that the harmful alga Cochlodinium polykrikoides, which had been previously known as an autotrophic dinoflagellate, was a mixotrophic species. We investigated the kinds of prey species and the effects of the prey concentration on the growth and ingestion rates of C. polykrikoides when feeding on an unidentified cryptophyte species (Equivalent Spherical Diameter, ESD = 5.6 microm). We also calculated grazing coefficients by combining field data on abundances of C. polykrikoides and co-occurring cryptophytes with laboratory data on ingestion rates obtained in the present study. Cocholdinium polykrikoides fed on prey cells by engulfing the prey through the sulcus. Among the phytoplankton prey offered, C. polykrikoides ingested small phytoplankton species that had ESD's < or = 11 microm (e.g. the prymnesiophyte Isochrysis galbana, an unidentified cryptophyte, the cryptophyte Rhodomonas salina, the raphidophyte Heterosigma akashiwo, and the dinoflagellate Amphidinium carterae). It did not feed on larger phytoplankton species that had ESD's > or = 12 microm (e.g. the dinoflagellates Heterocapsa triquetra, Prorocentrum minimum, Scrippsiella sp., Alexandrium tamarense, Prorocentrum micans, Gymnodinium catenatum, Akashiwo sanguinea, and Lingulodinium polyedrum). Specific growth rates of C. polykrikoides on a cryptophyte increased with increasing mean prey concentration, with saturation at a mean prey concentration of approximately 270 ng C ml(-1) (i.e. 15,900 cells ml(-1)). The maximum specific growth rate (mixotrophic growth) of C. polykrikoides on a cryptophyte was 0.324 d(-1), under a 14:10 h light-dark cycle of 50 microE m(-2) s(-1), while its growth rate (phototrophic growth) under the same light conditions without added prey was 0.166 d(-1). Maximum ingestion and clearance rates of C. polykrikoides on a cryptophyte were 0.16 ng C grazer(-1)d(-1) (9.4 cells grazer(-1)d(-1)) and 0.33 microl grazer(-1)h(-1), respectively. Calculated grazing coefficients by C. polykrikoides on cryptophytes were 0.001-0.745 h(-1) (i.e. 0.1-53% of cryptophyte populations were removed by a C. polykrikoides population in 1 h). The results of the present study suggest that C. polykrikoides sometimes has a considerable grazing impact on populations of cryptophytes.


Subject(s)
Dinoflagellida/physiology , Eating/physiology , Eukaryota/physiology , Predatory Behavior/physiology , Animals , Cryptophyta , Dinoflagellida/metabolism , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...