Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e32140, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38882312

ABSTRACT

The anti-viral properties of a small (≈1 kDa), novel Ru(II) photo dynamic compound (PDC), referred to as TLD-1433 (Ruvidar™), are presented. TLD-1433 had previously been demonstrated to exert strong anti-bacterial and anti-cancer properties. We evaluated the capacity of TLD-1433 to inactivate several human pathogenic viruses. TLD-1433 that was not photo-activated was capable of effectively inactivating 50 % of influenza H1N1 virus (ID50) at a concentration of 117 nM. After photo-activation, the ID50 was reduced to <10 nM. The dose of photo-activated TLD-1433 needed to reduce H1N1 infectivity >99 % (ID99) was approximately 170 nM. Similarly, the ID99 of photo-activated TLD-1433 was determined to range from about 20 to 120 nM for other tested enveloped viruses; specifically, a human coronavirus, herpes simplex virus, the poxvirus Vaccinia virus, and Zika virus. TLD-1433 also inactivated two tested non-enveloped viruses; specifically, adenovirus type 5 and mammalian orthoreovirus, but at considerably higher concentrations. Analyses of TLD-1433-treated membranes suggested that lipid peroxidation was a major contributor to enveloped virus inactivation. TLD-1433-mediated virus inactivation was temperature-dependent, with approximately 10-fold more efficient virucidal activity when viruses were treated at 37 °C than when treated at room temperature (∼22 °C). The presence of fetal bovine serum and virus solution turbidity reduced TLD-1433-mediated virucidal efficiency. Immunoblots of TLD-1433-treated human coronavirus indicated the treated spike protein remained particle-associated.

2.
Eur Urol Open Sci ; 41: 105-111, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35813250

ABSTRACT

Background: A phase 1b study of photosensitizer TLD-1433-mediated photodynamic therapy (PDT) was performed in bacillus Calmette-Guérin (BCG)-unresponsive non-muscle-invasive bladder cancer (NMIBC) patients. Objective: The primary objectives were safety and tolerability of PDT, with secondary objectives of (1) pharmacokinetic (PK) properties of TLD-1433 and (2) efficacy, as evaluated by recurrence-free survival and complete response (CR) at 90 and 180 d for patients treated at the maximum recommended starting dose (0.35 mg/cm2 bladder surface area) and the therapeutic dose (0.70 mg/cm2). Design setting and participants: Six BCG-unresponsive patients were enrolled in an open-label, single-arm, dose-escalating study of PDT. TLD-1433 was instilled intravesically for 60 min preoperatively. PDT was performed under general anesthesia using intravesically delivered irradiation of the bladder wall with green light (520 nm) to a dose of 90 J/cm2. Outcome measurements and statistical analysis: Patients were followed by standard cystoscopy and cytology for up to 18 mo to assess time to recurrence. Results and limitations: PDT was well tolerated by all patients. All patients experienced at least one grade ≤2 adverse event (AE). There were no patient deaths or light sensitivity reactions. The most common AE was moderate bladder irritability, which resolved within the first weeks after treatment. AEs were independent of the TLD-1433 dose. TLD-1433 was cleared in the urine and from the plasma within 24 and 72 h, respectively. Of three patients treated at the therapeutic dose, two achieved a CR at 180 d, which was durable at 18 mo. The other patient was diagnosed with metastatic disease at 138 d. Conclusions: PDT with TLD-1433 appears safe for the treatment of BCG-unresponsive NMIBC. Early efficacy signals from full-dose photosensitizer are encouraging and warrant phase 2 trial investigation. The safety and PK results obtained support the potential for administration of consecutive PDT treatments as required. Patient summary: Photodynamic therapy with TLD-1433 appears to be safe and effective for the treatment of bacillus Calmette-Guérin (BCG)-unresponsive bladder cancer.

3.
Curr Opin Chem Biol ; 56: 23-27, 2020 06.
Article in English | MEDLINE | ID: mdl-31759225

ABSTRACT

Photodynamic therapy (PDT) is an approved medical technique to treat certain forms of cancer. It has been used to complement traditional anticancer modalities such as surgery, chemotherapy or radiotherapy, and in certain cases, to replace these treatments. One critical parameter of PDT is the photosensitizer (PS); historically, a purely organic macrocyclic tetrapyrrole-based structure. This short review surveys two recent clinical examples of metal complexes, namely TOOKAD®-Soluble and TLD-1433, which have ideal photophysical properties to act as PDT PSs. We highlight the important role played by the metal ions in the PS for PDT activity.


Subject(s)
Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Neoplasms/therapy , Photosensitizing Agents/chemistry , Antineoplastic Agents/pharmacology , Bacteriochlorophylls/chemistry , Bacteriochlorophylls/pharmacology , Combined Modality Therapy , Coordination Complexes/pharmacology , Drug Screening Assays, Antitumor , Humans , Photochemotherapy , Photosensitizing Agents/pharmacology , Solubility , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...