Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Granul Matter ; 26(3): 58, 2024.
Article in English | MEDLINE | ID: mdl-38659625

ABSTRACT

A snow slab avalanche releases after failure initiation and crack propagation in a highly porous weak snow layer buried below a cohesive slab. While our knowledge of crack propagation during avalanche formation has greatly improved over the last decades, it still remains unclear how snow mechanical properties affect the dynamics of crack propagation. This is partly due to a lack of non-invasive measurement methods to investigate the micro-mechanical aspects of the process. Using a DEM model, we therefore analyzed the influence of snow cover properties on the dynamics of crack propagation in weak snowpack layers. By focusing on the steady-state crack speed, our results showed two distinct fracture process regimes that depend on slope angle, leading to very different crack propagation speeds. For long experiments on level terrain, weak layer fracture is mainly driven by compressive stresses. Steady-state crack speed mainly depends on slab and weak layer elastic moduli as well as weak layer strength. We suggest a semi-empirical model to predict crack speed, which can be up to 0.6 times the slab shear wave speed. For long experiments on steep slopes, a supershear regime appeared, where the crack propagation speed reached approximately 1.6 times the slab shear wave speed. A detailed micro-mechanical analysis of stresses revealed a fracture principally driven by shear. Overall, our findings provide new insight into the micro-mechanics of dynamic crack propagation in snow, and how these are linked to snow cover properties. Supplementary Information: The online version contains supplementary material available at 10.1007/s10035-024-01423-5.

2.
Lab Chip ; 22(21): 4043-4066, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36196619

ABSTRACT

Complex three-dimensional (3D) in vitro models are emerging as a key technology to support research areas in personalised medicine, such as drug development and regenerative medicine. Tools for manipulation and positioning of microtissues play a crucial role in the microtissue life cycle from production to end-point analysis. The ability to precisely locate microtissues can improve the efficiency and reliability of processes and investigations by reducing experimental time and by providing more controlled parameters. To achieve this goal, standardisation of the techniques is of primary importance. Compared to microtissue production, the field of microtissue manipulation and positioning is still in its infancy but is gaining increasing attention in the last few years. Techniques to position microtissues have been classified into four main categories: hydrodynamic techniques, bioprinting, substrate modification, and non-contact active forces. In this paper, we provide a comprehensive review of the different tools for the manipulation and positioning of microtissues that have been reported to date. The working mechanism of each technique is described, and its merits and limitations are discussed. We conclude by evaluating the potential of the different approaches to support progress in personalised medicine.


Subject(s)
Tissue Engineering , Reproducibility of Results , Tissue Engineering/methods
3.
Phys Rev E ; 106(1-2): 015105, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974560

ABSTRACT

In view of its influence on the acoustic radiation force, we investigate the microstreaming around a small solid elastic particle in an ultrasonic standing wave in dependence of its material properties and shape. The configuration is axisymmetric, making it accessible to numerical methods, such as the finite element method. The results reveal a transition from viscous scattering- to microstreaming-dominated acoustic radiation force that depends on the particle density. When a deviation of the particle shape from a sphere becomes smaller than the viscous boundary layer thickness, we show that the influence of the shape on the viscous contributions to the acoustic radiation force diminishes, allowing the use of theoretical models for a spherical particle. However, extreme asymmetric shape perturbations, such as crowns with sharp edges, can give rise to noticeable viscous contributions for a dense particle that is larger than the viscous boundary layer thickness. We also introduce a hybrid analytical model for the acoustic radiation force on a spherical particle that accounts for the microstreaming and particle compressibility and shows a good agreement with numerical simulations for an arbitrary particle size and density.

4.
Lab Chip ; 22(15): 2810-2819, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35843222

ABSTRACT

Despite a long history and the vast number of applications demonstrated, very few market products incorporate acoustophoresis. Because a human operator must run and control a device during an experiment, most devices are limited to proof of concepts. On top of a possible detuning due to temperature changes, the human operator introduces a bias which reduces the reproducibility, performance and reliability of devices. To mitigate some of these problems, we propose an optical feedback control loop that optimizes the excitation frequency. We investigate the improvements that can be expected when a human operator is replaced for acoustic micro- and nanometer particle focusing experiments. Three experiments previously conducted in our group were taken as a benchmark. In addition to being automatic, this resulted in the feedback control loop displaying a superior performance compared to an experienced scientist in 1) improving the particle focusing by at least a factor of two for 5 µm diameter PS particles, 2) increasing the range of flow rates in which 1 µm diameter PS particles could be focused and 3) was even capable of focusing 600 nm diameter PS particles at a frequency of 1.72075 MHz. Furthermore, the feedback control loop is capable of focusing biological cells in one and two pressure nodes. The requirements for the feedback control loop are: an optical setup, a run-of-the-mill computer and a computer controllable function generator. Thus resulting in a cost-effective, high-throughput and automated method to rapidly increase the efficiency of established systems. The code for the feedback control loop is openly accessible and the authors explicitly wish that the community uses and modifies the feedback control loop to their own needs.


Subject(s)
Acoustics , Nanoparticles , Feedback , Humans , Reproducibility of Results
5.
Phys Rev E ; 105(5-2): 055103, 2022 May.
Article in English | MEDLINE | ID: mdl-35706167

ABSTRACT

Pulsed excitations of piezoelectric transducers affect during the buildup the force contributions from acoustic streaming (AS) and the acoustic radiation force (ARF) to the total force in a standing pressure wave differently. We find with an optical tweezer as measuring instrument that during the first 120 000 excitation periods and across different pulsing frequencies, the AS-induced displacement is on average less than 20% of its nonpulsed value for a duty cycle of 50%, whereas the ARF-induced displacement is around 50%. These findings show that a pulsed excitation can be a tool for reducing AS compared to the ARF.

6.
Phys Rev E ; 105(5): L053101, 2022 May.
Article in English | MEDLINE | ID: mdl-35706213

ABSTRACT

Scattering of an acoustic wave by particles gives rise to microstreaming, as well as to acoustic radiation and interaction forces on the particles. We numerically study these steady, nonlinear phenomena for a case of two elastic spheres in a standing wave. We show that if one or both spheres are smaller or comparable to the viscous boundary layer, the microstreaming close to the pressure node can lead to an interparticle attraction along the direction of the pressure gradient of the wave. Similar behavior is observed when, instead of size, density of one of the spheres is sufficiently larger relative to the other sphere. These findings could promote the acoustic manipulation of nanoparticles and bacteria.

7.
iScience ; 25(3): 103983, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35310333

ABSTRACT

Human centenarians and longevity mutants of model organisms show lower incidence rates of late-life morbidities than the average population. However, whether longevity is caused by a compression of the portion of life spent in a state of morbidity, i.e., "sickspan," is highly debated even in isogenic Caenorhabditis elegans. Here, we developed a microfluidic device that employs acoustophoretic force fields to quantify the maximum muscle strength and dynamic power in aging C. elegans. Together with different biomarkers for healthspan, we found a stochastic onset of morbidity, starting with a decline in dynamic muscle power and structural integrity, culminating in frailty. Surprisingly, we did not observe a compression of sickspan in longevity mutants but instead observed a temporal scaling of healthspan. Given the conservation of these longevity interventions, this raises the question of whether the healthspan of mammalian longevity interventions is also temporally scaled.

8.
Phys Rev E ; 104(2-2): 025104, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34525602

ABSTRACT

The combination of a bulk acoustic wave device and an optical trap allows for studying the buildup time of the respective acoustic forces. In particular, we are interested in the time it takes to build up the acoustic radiation force and acoustic streaming. For that, we measure the trajectory of a spherical particle in an acoustic field over time. The shape of the trajectory is determined by the acoustic radiation force and by acoustic streaming, both acting on different time scales. For that, we utilize the high temporal resolution (Δt=0.8µs) of an optical trapping setup. With our experimental parameters the acoustic radiation force on the particle and the acoustic streaming field theoretically have characteristic buildup times of 1.4µs and 1.44ms, respectively. By choosing a resonance mode and a measurement position where the acoustic radiation force and acoustic streaming induced viscous drag force act in orthogonal directions, we can measure the evolution of these effects separately. Our results show that the particle is accelerated nearly instantaneously by the acoustic radiation force to a constant velocity, whereas the acceleration phase to a constant velocity by the acoustic streaming field takes significantly longer. We find that the acceleration to a constant velocity induced by streaming takes in average about 17 500 excitation periods (≈4.4ms) longer to develop than the one induced by the acoustic radiation force. This duration is about four times larger than the so-called momentum diffusion time which is used to estimate the streaming buildup. In addition, this rather large difference in time can explain why a pulsed acoustic excitation can indeed prevent acoustic streaming as it has been shown in some previous experiments.

9.
Anal Chem ; 93(28): 9760-9770, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34228921

ABSTRACT

Acoustically excited microstructures have demonstrated significant potential for small-scale biomedical applications by overcoming major microfluidic limitations. Recently, the application of oscillating microbubbles has demonstrated their superiority over acoustically excited solid structures due to their enhanced acoustic streaming at low input power. However, their limited temporal stability hinders their direct applicability for industrial or clinical purposes. Here, we introduce the embedded microbubble, a novel acoustofluidic design based on the combination of solid structures (poly(dimethylsiloxane)) and microbubbles (air-filled cavity) to combine the benefits of both approaches while minimizing their drawbacks. We investigate the influence of various design parameters and geometrical features through numerical simulations and experimentally evaluate their manipulation capabilities. Finally, we demonstrate the capabilities of our design for microfluidic applications by investigating its mixing performance as well as through the controlled rotational manipulation of individual HeLa cells.


Subject(s)
Microbubbles , Microfluidics , Acoustics , HeLa Cells , Humans
10.
Sci Rep ; 11(1): 11711, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34083553

ABSTRACT

Dry-snow slab avalanches result from crack propagation in a highly porous weak layer buried within a stratified and metastable snowpack. While our understanding of slab avalanche mechanisms improved with recent experimental and numerical advances, fundamental micro-mechanical processes remain poorly understood due to a lack of non-invasive monitoring techniques. Using a novel discrete micro-mechanical model, we reproduced crack propagation dynamics observed in field experiments, which employ the propagation saw test. The detailed microscopic analysis of weak layer stresses and bond breaking allowed us to define the crack tip location of closing crack faces, analyze its spatio-temporal characteristics and monitor the evolution of stress concentrations and the fracture process zone both in transient and steady-state regimes. Results highlight the occurrence of a steady state in crack speed and stress conditions for sufficiently long crack propagation distances (> 4 m). Crack propagation without external driving force except gravity is possible due to the local mixed-mode shear-compression stress nature at the crack tip induced by slab bending and weak layer volumetric collapse. Our result shed light into the microscopic origin of dynamic crack propagation in snow slab avalanche release that eventually will improve the evaluation of avalanche release sizes and thus hazard management and forecasting in mountainous regions.

11.
Micromachines (Basel) ; 12(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068670

ABSTRACT

Deep reactive ion etching (DRIE) with the Bosch process is one of the key procedures used to manufacture micron-sized structures for MEMS and microfluidic applications in silicon and, hence, of increasing importance for miniaturisation in biomedical research. While guaranteeing high aspect ratio structures and providing high design flexibility, the etching procedure suffers from reactive ion etching lag and often relies on complex oxide masks to enable deep etching. The reactive ion etching lag, leading to reduced etch depths for features exceeding an aspect ratio of 1:1, typically causes a height difference of above 10% for structures with aspect ratios ranging from 2.5:1 to 10:1, and, therefore, can significantly influence subsequent device functionality. In this work, we introduce an optimised two-step Bosch process that reduces the etch lag to below 1.5%. Furthermore, we demonstrate an improved three-step Bosch process, allowing the fabrication of structures with 6 µm width at depths up to 180 µm while maintaining their stability.

12.
Phys Rev E ; 104(6-2): 065107, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35030836

ABSTRACT

An analytical theory is developed for acoustic streaming induced by an axisymmetric acoustic wave field around an isotropic solid spherical particle in a compressible viscoelastic fluid. The particle is assumed to undergo pulsation, translation, and shape deformations of all orders. The fluid motion is described by the compressible Oldroyd-B model. No restrictions are imposed on the particle size with respect to the acoustic wavelength and the viscous penetration depth. The obtained analytical solutions are used in numerical simulations. It is shown that in the general case, the streaming velocity magnitude decreases with increasing polymer viscosity. Increasing relaxation time (elasticity) of the polymer solution leads to increasing streaming velocity magnitude as long as the relaxation time remains relatively small. It is also observed that the variation of the polymer viscosity and the relaxation time can change the pattern of streamlines.

13.
Phys Rev E ; 104(6-2): 065108, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35030885

ABSTRACT

An analytical formula is derived for acoustic radiation force exerted by an axisymmetric acoustic wave on an isotropic solid spherical particle in a compressible viscoelastic fluid. The particle is assumed to undergo pulsation, translation, and shape deformations of all orders. The fluid motion is described by the compressible Oldroyd-B model. No restrictions are imposed on the particle size with respect to the acoustic wavelength and the viscous penetration depth. The obtained analytical formula is used in numerical simulations. The results show that the acoustic radiation force can be increased by more than a factor of 10 due to the viscoelastic nature of the fluid, depending on the parameters. It is also observed that the sign of the force can change so that the force becomes directed to the velocity node instead of the velocity antinode if the driving frequency, the particle size, and the relaxation time of the polymer solution are relatively small.

14.
Biomicrofluidics ; 14(6): 064112, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33381252

ABSTRACT

Droplet microfluidics enables high-throughput screening of single cells and is particularly valuable for applications, where the secreted compounds are analyzed. Typically, optical methods are employed for analysis, which are limited in their applicability as labeling protocols are required. Alternative label-free methods such as mass spectrometry would broaden the range of assays but are harmful to the cells, which is detrimental for some applications such as directed evolution. In this context, separation of cells from supernatant is beneficial prior to the analysis to retain viable cells. In this work, we propose an in-droplet separation method based on contactless and label-free acoustic particle manipulation. In a microfluidic chip, nanoliter droplets containing particles are produced at a T-junction. The particles are trapped in the tip of the droplet by the interplay of acoustic forces in two dimensions and internal flow fields. The droplets are subsequently split at a second T-junction into two daughter droplets-one containing the supernatant and the other containing the corresponding particles. The separation efficiency is measured in detail for polystyrene (PS) beads as a function of droplet speed, size, split ratio, and particle concentration. Further, single-bead (PS) and single-cell (yeast) experiments were carried out. At a throughput of 114 droplets/min, a separation efficiency of 100% ± 0% was achieved for more than 150 droplets. Finally, mammalian cells and bacteria were introduced into the system to test its versatility. This work demonstrates a robust, non-invasive strategy to perform single yeast cell-supernatant sampling in nanoliter volumes.

15.
Bioeng Transl Med ; 5(3): e10181, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33005743

ABSTRACT

Hydrogel-based three-dimensional (3D) cellular models are attractive for bioengineering and pharmaceutical development as they can more closely resemble the cellular function of native tissue outside of the body. In general, these models are composed of tissue specific cells embedded within a support material, such as a hydrogel. As hydrogel properties directly affect cell function, hydrogel composition is often tailored to the cell type(s) of interest and the functional objective of the model. Here, we develop a parametric analysis and screening method to identify suitable encapsulation conditions for the formation of myotubes from primary murine myoblasts in methacryloyl gelatin (GelMA) hydrogels. The effect of the matrix properties on the myotube formation was investigated by varying GelMA weight percent (wt%, which controls gel modulus), cell density, and Matrigel concentration. Contractile myotubes form via myoblast fusion and are characterized by myosin heavy chain (MyHC) expression. To efficiently screen the gel formulations, we developed a fluorescence-based plate reader assay to quantify MyHC staining in the gel samples, as a metric of myotube formation. We observed that lower GelMA wt% resulted in increased MyHC staining (myotube formation). The cell density did not significantly affect MyHC staining, while the inclusion of Matrigel increased MyHC staining, however, a concentration dependent effect was not observed. These findings were supported by the observation of spontaneously contracting myotubes in samples selected in the initial screen. This work provides a method to rapidly screen hydrogel formulations for the development of 3D cellular models and provides specific guidance on the formulation of gels for myotube formation from primary murine myoblasts in 3D.

16.
Phys Rev Lett ; 124(15): 154501, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32357031

ABSTRACT

We study sharp-edge structures that are used in microfluidic systems for particle and cell manipulation. Experiments show that oscillating sharp edges can attract or repel particles suspended in a microfluidic channel. This effect is caused by acoustic radiation forces induced by sharp edges. We propose an analytical theory that allows one to evaluate the acoustic radiation force produced by a sharp-edge structure on elastic particles and to study which parameters govern the interaction of particles with a sharp-edge structure, forcing them to be attracted in one situation and to be repelled in another situation. The proposed theory gives foundations for the design of microfluidic systems making use of sharp edges for particle trapping. We also provide experimental data to validate the theory.

17.
Phys Rev E ; 101(1-1): 013108, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32069564

ABSTRACT

An analytical theory is developed for acoustic streaming induced by an acoustic wave field inside and outside a spherical fluid particle, which can be a liquid droplet or a gas bubble. The particle is assumed to undergo the monopole (pulsation) and the dipole (translation) oscillation modes. The dispersed phase and the carrier medium are considered to be immiscible, compressible, and viscous. The developed theory allows one to calculate the acoustic streaming both outside and inside the fluid particle. In contrast to earlier works, no restrictions are imposed on the thickness of the outer and inner viscous boundary layers with respect to the particle radius. A numerical implementation of the obtained analytical results is used to evaluate the acoustic streaming for different experimentally relevant configurations, such as an air bubble in water, a water droplet in oil, and a water droplet in air, considering both traveling and standing acoustic waves. The results show the richness of streaming pattern variations that arise in bubbles and droplets.

18.
Ultrasonics ; 100: 105984, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31479964

ABSTRACT

In this paper we demonstrate a non-destructive, non-contact detection method for small defects in thin polymer plates using an air coupled ultrasonic (ACUS) setup. There exist many applications for such methods, e.g. quality control in the manufacturing process or failure prevention by periodical inspections during the lifetime of a product. We demonstrate a setup for the inspection of plates together with signal analysis algorithms to process the measured data, meeting the challenges to handle the dispersive signals and establishing a robust failure criterion. Pressure waves from the transmitter excite different modes of Lamb waves inside the plate. These Lamb waves propagate in the plate and reradiate pressure waves into the air that are then detected by the receiver. Lamb mode conversion is used for defect detection. A numerical model allows the visualization of the propagating waves in the air as well as the Lamb waves inside the plate. Four key parameters of the setup are identified, two angles and two distances. The transmitter and the receiver angles are used to select which Lamb mode (anti-symmetric A0 or symmetric S0) is mainly excited and detected, respectively. For the acquisition of the Lamb wave signal the distance from the transmitter to the receiver should be as large as possible but is limited by the attenuation of the signal. Measurements for different values of this distance are essential for signal analysis. The distance between transducer and plate surface should be as small as possible even if it may introduce secondary Lamb waves due to reflections of the pressure wave between transmitter and plate surface. Two algorithms, a model based one and a data driven one, are presented to separate Lamb modes that overlap in time. In these separated signals, the Lamb mode conversion from A0 to S0 is shown, allowing a localization of the defect. We conclude that defect detection and localization with Lamb mode conversion is possible with an air coupled ultrasonic setup. Multiple measurements along the propagation direction of the Lamb waves are necessary to allow a thorough signal analysis and visualize the mode conversion.

19.
Phys Rev E ; 100(6-1): 061102, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31962519

ABSTRACT

We numerically investigate the contribution of the microstreaming to the acoustic radiation force acting on a small elastic spherical particle placed into an ultrasonic standing wave. When an acoustic wave scatters on a particle the acoustic radiation force and the microstreaming appear as nonlinear time-averaged effects. The compressible Navier-Stokes equations are solved up to second order in terms of the small Mach number using a finite element method. We show that when the viscous boundary layer thickness to particle radius ratio is sufficiently large and the particle is sufficiently dense, the acoustic microstreaming dominates the acoustic radiation force. In this case, our theory predicts migration of the particle to the velocity node (pressure antinode).

20.
Biophys J ; 115(9): 1817-1825, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30314654

ABSTRACT

The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 ± 26 µm in length and 15 ± 2 µm in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility κCe of 430 TPa-1 with an uncertainty range of ±20 TPa-1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications.


Subject(s)
Acoustics/instrumentation , Caenorhabditis elegans , Lab-On-A-Chip Devices , Animals , Biomechanical Phenomena , Compressive Strength , Hydrodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...