Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1301447, 2024.
Article in English | MEDLINE | ID: mdl-38450407

ABSTRACT

Introduction: Actinorhizal symbioses are gaining attention due to the importance of symbiotic nitrogen fixation in sustainable agriculture. Sea buckthorn (Hippophae L.) is an important actinorhizal plant, yet research on the microbial community and nitrogen cycling in its nodules is limited. In addition, the influence of environmental differences on the microbial community of sea buckthorn nodules and whether there is a single nitrogen-fixing actinomycete species in the nodules are still unknown. Methods: We investigated the diversity, community composition, network associations and nitrogen cycling pathways of the microbial communities in the root nodule (RN), nodule surface soil (NS), and bulk soil (BS) of Mongolian sea buckthorn distributed under three distinct ecological conditions in northern China using 16S rRNA gene and metagenomic sequencing. Combined with the data of environmental factors, the effects of environmental differences on different sample types were analyzed. Results: The results showed that plants exerted a clear selective filtering effect on microbiota, resulting in a significant reduction in microbial community diversity and network complexity from BS to NS to RN. Proteobacteria was the most abundant phylum in the microbiomes of BS and NS. While RN was primarily dominated by Actinobacteria, with Frankia sp. EAN1pec serving as the most dominant species. Correlation analysis indicated that the host determined the microbial community composition in RN, independent of the ecological and geographical environmental changes of the sea buckthorn plantations. Nitrogen cycle pathway analyses showed that RN microbial community primarily functions in nitrogen fixation, and Frankia sp. EAN1pec was a major contributor to nitrogen fixation genes in RN. Discussion: This study provides valuable insights into the effects of eco-geographical environment on the microbial communities of sea buckthorn RN. These findings further prove that the nodulation specificity and stability of sea buckthorn root and Frankia sp. EAN1pec may be the result of their long-term co-evolution.

2.
Microbiol Spectr ; 11(1): e0232822, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36688690

ABSTRACT

Near-natural forest management plays an important role in the maintenance of the long-term productivity and soil fertility of plantations. We conducted high-throughput absolute quantitative sequencing of 16S rRNA genes to compare the structures and diversity of rhizosphere soil bacterial communities among a pure Chinese fir (Cunninghamia lanceolata) plantation (S), a Cunninghamia lanceolata-Castanopsis hystrix-Michelia hedyosperma mixed plantation (SHX), and a Cunninghamia lanceolata-Castanopsis fissa mixed plantation (SD). The results revealed that near-natural forest management improved the rhizosphere soil properties of Chinese fir, especially the phosphorus content. Rhizosphere soil bacterial communities of Chinese fir in SHX and SD contained higher total absolute abundances and more unique operational taxonomic units (OTUs) than the pure plantation forest. Planctomycetes and Actinobacteria were abundant in SD, and Actinobacteria were enriched in SHX. The tree species also had an impact on the rhizosphere soil bacterial communities. For the rhizosphere soils of different tree species of SHX, the available phosphorus (AP) content of the rhizosphere of Chinese fir significantly surpassed those of Castanopsis hystrix and Michelia hedyosperma. Bacteria related to nitrogen fixing, such as Burkholderiales and Rhizobiales, were more abundant in Chinese fir in SD than in Castanopsis fissa. Acdiobacteria and Proteobacteria underpinned the differences found in the compositions of soil bacteria. The pH and soil organic matter were key variables influencing the rhizosphere soil bacterial communities. Our results demonstrated that in Chinese fir plantations, 12 years of near-natural management of introduced broad-leaved tree species can drive alterations of the physicochemical characteristics, bacterial community structure, and composition of rhizosphere soil, with tree species identity further influencing the rhizosphere soil bacterial community. IMPORTANCE Near-natural forest management is an important way to change the soil fertility decline and productivity reduction of pure Chinese fir plantations. At present, many detailed studies have been carried out on the impact of near-natural forest management on Chinese fir plantations at home and abroad. However, there are still few studies on the response of rhizosphere bacterial communities to near-natural forest management. Our study determined absolute quantities of Chinese fir rhizosphere bacterial communities in different mixed patterns. The results underscore the importance of near-natural forest management for Chinese fir plantation rhizosphere bacterial communities and provide new information on soil factors that affect rhizosphere bacterial communities in South China.


Subject(s)
Cunninghamia , Trees , Cunninghamia/chemistry , Rhizosphere , RNA, Ribosomal, 16S/genetics , Forests , Bacteria/genetics , Soil/chemistry , Phosphorus , Soil Microbiology
3.
Front Plant Sci ; 13: 1042290, 2022.
Article in English | MEDLINE | ID: mdl-36388519

ABSTRACT

Seed orchards represent the link between forest breeding and conifer production forests, and their mating patterns determine the genetic quality of seed orchard crops to a large extent. We genotyped the parental clones and their open pollination offspring in the third-generation seed orchard of Chinese fir using microsatellite markers and observed the synchronization of florescence in the seed orchard to understand the genetic diversity and mating structure of the seed orchard population. Genetic coancestry among parental clones was detected in the third generation seed orchard of Chinese fir, and the genetic diversity of the open-pollinated offspring was slightly higher than that of the parental clones. The external pollen contamination rate ranged from 10.1% to 33.7%, 80% of the offspring were produced by 44% of the parental clones in the orchard, and no evidence of selfing was found. We found that 68.1% of the effective pollination occurred within 50 m, and 19.9% of the effective pollination occurred in the nearest neighbors. We also found that successful mating requires about 30% of florescence overlap between males and females, and there was a significant positive correlation between male reproductive energy and male parental contribution. Our results provide a valuable reference for the management and design of advanced generation seed orchards.

4.
Plant Biotechnol J ; 20(7): 1257-1273, 2022 07.
Article in English | MEDLINE | ID: mdl-35244328

ABSTRACT

Plants of the Elaeagnaceae family are widely used to treat various health disorders owing to their natural phytochemicals. Seabuckthorn (Hippophae rhamnoides L.) is an economically and ecologically important species within the family with richness of biologically and pharmacologically active substances. Here, we present a chromosome-level genome assembly of seabuckthorn (http://hipp.shengxin.ren/), the first genome sequence of Elaeagnaceae, which has a total length of 849.04 Mb with scaffold N50 of 69.52 Mb and 30 864 annotated genes. Two sequential tetraploidizations with one occurring ~36-41 million years ago (Mya) and the last ~24-27 Mya were inferred, resulting in expansion of genes related to ascorbate and aldarate metabolism, lipid biosynthesis, and fatty acid elongation. Comparative genomic analysis reconstructed the evolutionary trajectories of the seabuckthorn genome with the predicted ancestral genome of 14 proto-chromosomes. Comparative transcriptomic and metabonomic analyses identified some key genes contributing to high content of polyunsaturated fatty acids and ascorbic acid (AsA). Additionally, we generated and analysed 55 whole-genome sequences of diverse accessions, and identified 9.80 million genetic variants in the seabuckthorn germplasms. Intriguingly, genes in selective sweep regions identified through population genomic analysis appeared to contribute to the richness of AsA and fatty acid in seabuckthorn fruits, among which GalLDH, GMPase and ACC, TER were the potentially major-effect causative genes controlling AsA and fatty acid content of the fruit, respectively. Our research offers novel insights into the molecular basis underlying phytochemical innovation of seabuckthorn, and provides valuable resources for exploring the evolution of the Elaeagnaceae family and molecular breeding.


Subject(s)
Hippophae , Ascorbic Acid , Chromosomes , Fatty Acids , Hippophae/genetics , Metagenomics , Phytochemicals
5.
RNA Biol ; 18(sup2): 794-803, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34806556

ABSTRACT

In plants, recent studies have revealed that N6-methyladenosine (m6A) methylation of mRNA has potential regulatory functions of this mRNA modification in many biological processes. m6A methyltransferase, m6A demethylase and m6A-binding proteins can cause differential phenotypes, indicating that m6A may have critical roles in the plant. In this study, we depicted the m6A map of sea buckthorn (Hippophae rhamnoides Linn.) transcriptome. Similar to A. thaliana, m6A sites of sea buckthorn transcriptome is significantly enriched around the stop codon and within 3'-untranslated regions (3'UTR). Gene ontology analysis shows that the m6A modification genes are associated with metabolic biosynthesis. In addition, we identified 13,287 different m6A peaks (DMPs) between leaf under drought (TR) and control (CK) treatment. It reveals that m6A has a high level of conservation and has a positive correlation with mRNA abundance in plants. GO and KEGG enrichment results showed that DMP modification DEGs in TR were particularly associated with ABA biosynthesis. Interestingly, our results showed three m6A demethylase (HrALKBH10B, HrALKBH10C and HrALKBH10D) genes were significantly increased following drought stress, which indicated that it may contributed the decreased m6A levels. This exhaustive m6A map provides a basis and resource for the further functional study of mRNA m6A modification in abiotic stress.


Subject(s)
Adenosine/analogs & derivatives , Droughts , Gene Expression Regulation, Plant , Hippophae/physiology , RNA, Messenger/genetics , Stress, Physiological , Transcriptome , Adenosine/genetics , Adenosine/metabolism , Gene Expression Profiling , Hippophae/classification , Methylation , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/metabolism , Signal Transduction
6.
Mitochondrial DNA B Resour ; 5(1): 982-983, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-33366837

ABSTRACT

The complete chloroplast genome sequence of Hippophae rahmnoides subsp. sinensis was characterized from Illumina pair-end sequencing. The chloroplast genome of H. rahmnoides subsp. sinensis was 156,355 bp in length, containing a large single-copy region (LSC) of 84,002 bp, a small single-copy region (SSC) of 19,055 bp, and two inverted repeat (IR) regions of 26,649 bp. The overall GC content is 36.6%, while the corresponding values of the LSC, SSC, and IR regions are 64.5%, 69.2%, and 60.1%, respectively. The genome contains 131 complete genes, including 88 protein-coding genes, 38 tRNA genes (29 tRNA species), and 8 rRNA genes (4 rRNA species). The neighbour-joining phylogenetic analysis showed that H. rahmnoides subsp. sinensis and H. rahmnoides clustered together as sisters to other H. rahmnoides species.

7.
DNA Res ; 25(5): 465-476, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29873696

ABSTRACT

Fruit ripening is a developmental process regulated by a complex network of endogenous and exogenous cues. Sea buckthorn is an excellent material for fruit ripening studies due to its dramatic ripening process and high contents of nutritional and anti-oxidant compounds in berries. Here, the whole transcriptome of sea buckthorn fruit at three development stages were analysed using multiple high-throughput sequencings. We assembled and annotated 9,008 long non-coding RNAs (lncRNAs) in sea buckthorn fruits, and identified 118 differentially expressed lncRNAs (DE-lncRNAs) and 32 differentially expressed microRNAs in fruit developmental process. In addition, we predicted 1,061 cis-regulated and 782 trans-regulated targets of DE-lncRNAs, and these DE-lncRNAs are specifically enriched in the biosynthesis of ascorbic acid, carotenoids and flavonoids. Moreover, the silencing of two lncRNAs (LNC1 and LNC2) in vivo and expression analysis revealed that LNC1 and LNC2 can act as endogenous target mimics of miR156a and miR828a to reduce SPL9 and induce MYB114 expression, respectively, which lead to increased and decreased anthocyanin content as revealed by high-performance liquid chromatography analysis. Our results present the first global functional analysis of lncRNA in sea buckthorn and provide two essential regulators of anthocyanin biosynthesis, which provides new insights into the regulation of fruit quality.


Subject(s)
Anthocyanins/biosynthesis , Fruit/genetics , Fruit/metabolism , Hippophae/genetics , Hippophae/metabolism , RNA, Long Noncoding/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , MicroRNAs/genetics , RNA Interference , RNA, Messenger/genetics , Transcriptome
8.
Gene ; 596: 130-136, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27751814

ABSTRACT

Long non-coding RNAs (lncRNAs), which are >200nt longer transcripts, potentially play important roles in almost all biological processes in plants and mammals. However, the functions and profiles of lncRNAs in fruit is less understood. Therefore, it is urgent and necessary to identify and analyze the functions of lncRNAs in sea buckthorns. Using RNA-sequencing, we synthetically identified lncRNAs in mature fruit from the red and yellow sea buckthorn. We obtained 567,778,938 clean reads from six samples and identified 3428 lncRNAs in mature fruit, including 2498 intergenic lncRNAs, 593 anti-sense lncRNAs, and 337 intronic lncRNAs. We also identified 3819 and 2295 circular RNAs in red and yellow sea buckthorn Fruit. In the aspects of gene architecture and expression, our results showed significant differences among the three lncRNA subtypes. We also investigated the effect of lncRNAs on its cis and trans target genes. Based on target genes analysis, we obtained 61 different expression lncRNAs (DE-lncRNAs) between these two sea buckthorns, including 23 special expression lncRNAs in red fruit and 22 special expression lncRNAs in yellow fruit. Importantly, we found a few DE-lncRNAs play cis and trans roles for genes in the Carotenoid biosynthesis, ascorbate and aldarate metabolism and fatty acid metabolism pathways. Our study provides a resource for lncRNA studies in mature fruit. It probably encourages researchers to deeply study fruit-coloring. It expands our knowledge about lncRNA biology and the annotation of the sea buckthorn genome.


Subject(s)
Fruit/genetics , Gene Expression Regulation, Plant , Hippophae/genetics , RNA, Long Noncoding/genetics , Fruit/physiology , Genome, Plant , Hippophae/physiology , RNA , RNA, Circular , RNA, Plant
9.
Proteome Sci ; 14: 14, 2016.
Article in English | MEDLINE | ID: mdl-27761102

ABSTRACT

BACKGROUND: Low temperature is one of the crucial environmental factors limiting the productivity and distribution of plants. Sea buckthorn (Hippophae rhamnoides L.), a well recognized multipurpose plant species, live successfully in in cold desert regions. But their molecular mechanisms underlying cold tolerance are not well understood. METHODS: Physiological and biochemical responses to low-temperature stress were studied in seedlings of sea buckthorn. Differentially expressed protein spots were analyzed using multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry (MS), the concentration of phytohormone was measured using enzyme-linked immunosorbent assay, and a spectrophotometric assay was used to measure enzymatic reactions. RESULTS: With the increase of cold stress intensity, the photosynthesis rate, transpiration rate, stomatal conductance in leaves and contents of abscisic acid (ABA) and indole acetic acid (IAA) in roots decreased significantly; however, water-use efficiency, ABA and zeatin riboside in leaves increased significantly, while cell membrane permeability, malondialdehyde and IAA in leaves increased at 7 d and then decreased at 14 d. DIGE and MS/MS analysis identified 32 of 39 differentially expressed protein spots under low-temperature stress, and their functions were mainly involved in metabolism, photosynthesis, signal transduction, antioxidative systems and post-translational modification. CONCLUSION: The changed protein abundance and corresponding physiological-biochemical response shed light on the molecular mechanisms related to cold tolerance in cold-tolerant plants and provide key candidate proteins for genetic improvement of plants.

10.
Sci Rep ; 6: 28043, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27306416

ABSTRACT

In plants, the maintenance of species integrity despite hybridization has often been explained by the co-adaption of nuclear gene complexes. However, the interaction between plastid and nuclear sub-genomes has been underestimated. Here, we analyzed the genetic structure of a Populus alba and P. tremula hybrid zone along the Irtysh River system in the Altai region, northwest China, using both nuclear microsatellites and plastid DNA sequences. We found high interspecific differentiation, although the hybrid P. × canescens was prevalent. Bayesian inference classified most hybrids into F1, followed by a few back-crosses to P. alba, and fewer F2 hybrids and back-crosses to P. tremula, indicating a few introgressions but preference toward P. alba. When plastid haplotypes in parental species were distinct, P. × canescens carried the haplotypes of both parents, but showed significant linkage between intraspecific haplotype and nuclear genotypes at several microsatellite loci. Selection, rather than migration and assortative mating, might have contributed to such plastid-nuclear disequilibria. By removing later-generated hybrids carrying interspecific combinations of haplotype and nuclear genotypes, plastid-nuclear incompatibility has greatly limited the gene exchange between P. alba and P. tremula via backcrossing with hybrids, demonstrating a significant association between plastid haplotype and the proportion of nuclear admixture.


Subject(s)
Cell Nucleus/genetics , Genetic Variation , Genetics, Population , Plastids/genetics , Populus/genetics , Rivers , Bayes Theorem , Genetic Linkage , Haplotypes
11.
PeerJ ; 4: e1929, 2016.
Article in English | MEDLINE | ID: mdl-27168964

ABSTRACT

Chinese fir (Cunninghamia lanceolata) is the most important commercial tree species in southern China. The objective of this study was to develop a variable taper equation for Chinese fir, and to quantify the effects of stand planting density on stem taper in Chinese fir. Five equations were fitted or evaluated using the diameter-height data from 293 Chinese fir trees sampled from stands with four different densities in Fenyi County, Jiangxi Province, in southern China. A total of 183 trees were randomly selected for the model development, with the remaining 110 trees used for model evaluation. The results show that the Kozak's, Sharma/Oderwald, Sharma/Zhang and modified Brink's equations are superior to the Pain/Boyer equation in terms of the fitting and validation statistics, and the modified Brink's and Sharma/Zhang equations should be recommended for use as taper equations for Chinese fir because of their high accuracy and variable exponent. The relationships between some parameters of the three selected equations and stand planting densities can be built by adopting some simple mathematical functions to examine the effects of stand planting density on tree taper. The modelling and prediction precision of the three taper equations were compared with or without incorporation of the stand density variable. The predictive accuracy of the model was improved by including the stand density variable and the mean absolute bias of the modified Brink's and Sharma/Zhang equations with a stand density variable were all below 1.0 cm in the study area. The modelling results showed that the trees have larger butt diameters and more taper when stand density was lower than at higher stand density.

12.
PLoS One ; 10(10): e0139788, 2015.
Article in English | MEDLINE | ID: mdl-26440942

ABSTRACT

Self-thinning is a dynamic equilibrium between forest growth and mortality at full site occupancy. Parameters of the self-thinning lines are often confounded by differences across various stand and site conditions. For overcoming the problem of hierarchical and repeated measures, we used hierarchical Bayesian method to estimate the self-thinning line. The results showed that the self-thinning line for Chinese fir (Cunninghamia lanceolata (Lamb.)Hook.) plantations was not sensitive to the initial planting density. The uncertainty of model predictions was mostly due to within-subject variability. The simulation precision of hierarchical Bayesian method was better than that of stochastic frontier function (SFF). Hierarchical Bayesian method provided a reasonable explanation of the impact of other variables (site quality, soil type, aspect, etc.) on self-thinning line, which gave us the posterior distribution of parameters of self-thinning line. The research of self-thinning relationship could be benefit from the use of hierarchical Bayesian method.


Subject(s)
Cunninghamia/growth & development , Forests , Animals , Bayes Theorem , China , Models, Theoretical
13.
PLoS One ; 10(5): e0126831, 2015.
Article in English | MEDLINE | ID: mdl-26016995

ABSTRACT

In this study, seven popular equations, including 3-parameter Weibull, 2-parameter Weibull, Gompertz, Logistic, Mitscherlich, Korf and R distribution, were used to model stand diameter distributions for exploring the relationship between the equations' inflection point attributes and model accuracy. A database comprised of 146 diameter frequency distributions of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations was used to demonstrate model fitting and comparison. Results showed that the inflection points of the stand diameter cumulative percentage distribution ranged from 0.4 to 0.6, showing a 1/2 close rule. The equation's inflection point attribute was strongly related to its model accuracy. Equation with an inflection point showed much higher accuracy than that without an inflection point. The larger the effective inflection point interval of the fitting curve of the equation was, and the closer the inflection point was to 0.5 for the equations with fixed inflection points, the higher the equation's accuracy was. It could be found that the equation's inflection point had close relationship with skewness of diameter distribution and stand age, stand density, which provided a scientific basis for model selection of a stand diameter distribution for Chinese fir plantations and other tree species.


Subject(s)
Cunninghamia , Models, Biological , Models, Theoretical , China , Cunninghamia/anatomy & histology , Databases, Factual , Forests
14.
PLoS One ; 9(10): e109122, 2014.
Article in English | MEDLINE | ID: mdl-25275458

ABSTRACT

Salix matsudana Koidz. is a deciduous, rapidly growing, and drought resistant tree and is one of the most widely distributed and commonly cultivated willow species in China. Currently little transcriptomic and small RNAomic data are available to reveal the genes involve in the stress resistant in S. matsudana. Here, we report the RNA-seq analysis results of both transcriptome and small RNAome data using Illumina deep sequencing of shoot tips from two willow variants(Salix. matsudana and Salix matsudana Koidz. cultivar 'Tortuosa'). De novo gene assembly was used to generate the consensus transcriptome and small RNAome, which contained 106,403 unique transcripts with an average length of 944 bp and a total length of 100.45 MB, and 166 known miRNAs representing 35 miRNA families. Comparison of transcriptomes and small RNAomes combined with quantitative real-time PCR from the two Salix libraries revealed a total of 292 different expressed genes(DEGs) and 36 different expressed miRNAs (DEMs). Among the DEGs and DEMs, 196 genes and 24 miRNAs were up regulated, 96 genes and 12 miRNA were down regulated in S. matsudana. Functional analysis of DEGs and miRNA targets showed that many genes were involved in stress resistance in S. matsudana. Our global gene expression profiling presents a comprehensive view of the transcriptome and small RNAome which provide valuable information and sequence resources for uncovering the stress response genes in S. matsudana. Moreover the transcriptome and small RNAome data provide a basis for future study of genetic resistance in Salix.


Subject(s)
RNA, Plant/genetics , Salix/genetics , Stress, Physiological/genetics , Transcriptome
15.
PLoS One ; 9(5): e98300, 2014.
Article in English | MEDLINE | ID: mdl-24847851

ABSTRACT

BACKGROUND: The atmospheric CO2 concentration increases every year. While the effects of elevated CO2 on plant growth, physiology and metabolism have been studied, there is now a pressing need to understand the molecular mechanisms of how plants will respond to future increases in CO2 concentration using genomic techniques. PRINCIPAL FINDINGS: Gene expression in triploid white poplar ((Populus tomentosa ×P. bolleana) ×P. tomentosa) leaves was investigated using the Affymetrix poplar genome gene chip, after three months of growth in controlled environment chambers under three CO2 concentrations. Our physiological findings showed the growth, assessed as stem diameter, was significantly increased, and the net photosynthetic rate was decreased in elevated CO2 concentrations. The concentrations of four major endogenous hormones appeared to actively promote plant development. Leaf tissues under elevated CO2 concentrations had 5,127 genes with different expression patterns in comparison to leaves under the ambient CO2 concentration. Among these, 8 genes were finally selected for further investigation by using randomized variance model corrective ANOVA analysis, dynamic gene expression profiling, gene network construction, and quantitative real-time PCR validation. Among the 8 genes in the network, aldehyde dehydrogenase and pyruvate kinase were situated in the core and had interconnections with other genes. CONCLUSIONS: Under elevated CO2 concentrations, 8 significantly changed key genes involved in metabolism and responding to stimulus of external environment were identified. These genes play crucial roles in the signal transduction network and show strong correlations with elevated CO2 exposure. This study provides several target genes, further investigation of which could provide an initial step for better understanding the molecular mechanisms of plant acclimation and evolution in future rising CO2 concentrations.


Subject(s)
Carbon Dioxide/chemistry , Gene Expression Regulation , Gene Regulatory Networks , Populus/genetics , Populus/metabolism , Aldehyde Dehydrogenase/genetics , Computational Biology , Gases , Genomics , Oligonucleotide Array Sequence Analysis , Photosynthesis , Plant Leaves/genetics , Plant Leaves/metabolism , Polyploidy , Pyruvate Kinase/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction , Transcriptome , Trees/genetics , Trees/metabolism
16.
ScientificWorldJournal ; 2014: 683691, 2014.
Article in English | MEDLINE | ID: mdl-24711733

ABSTRACT

Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the "best" model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.


Subject(s)
Bayes Theorem , Models, Biological , Trees
17.
PLoS One ; 8(11): e79868, 2013.
Article in English | MEDLINE | ID: mdl-24278198

ABSTRACT

Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is the most important conifer species for timber production with huge distribution area in southern China. Accurate estimation of biomass is required for accounting and monitoring Chinese forest carbon stocking. In the study, allometric equation W = a(D2H)b was used to analyze tree biomass of Chinese fir. The common methods for estimating allometric model have taken the classical approach based on the frequency interpretation of probability. However, many different biotic and abiotic factors introduce variability in Chinese fir biomass model, suggesting that parameters of biomass model are better represented by probability distributions rather than fixed values as classical method. To deal with the problem, Bayesian method was used for estimating Chinese fir biomass model. In the Bayesian framework, two priors were introduced: non-informative priors and informative priors. For informative priors, 32 biomass equations of Chinese fir were collected from published literature in the paper. The parameter distributions from published literature were regarded as prior distributions in Bayesian model for estimating Chinese fir biomass. Therefore, the Bayesian method with informative priors was better than non-informative priors and classical method, which provides a reasonable method for estimating Chinese fir biomass.


Subject(s)
Bayes Theorem , Cunninghamia , Biomass
18.
BMC Plant Biol ; 13: 119, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23964682

ABSTRACT

BACKGROUND: As one of the fastest-growing lignocellulose-abundant plants on Earth, bamboos can reach their final height quickly due to the expansion of individual internodes already present in the buds; however, the molecular processes underlying this phenomenon remain unclear. Moso bamboo (Phyllostachys heterocycla cv. Pubescens) internodes from four different developmental stages and three different internodes within the same stage were used in our study to investigate the molecular processes at the transcriptome and post-transcriptome level. RESULTS: Our anatomical observations indicated the development of culms was dominated by cell division in the initial stages and by cell elongation in the middle and late stages. The four major endogenous hormones appeared to actively promote culm development. Using next-generation sequencing-based RNA-Seq, mRNA and microRNA expression profiling technology, we produced a transcriptome and post-transcriptome in possession of a large fraction of annotated Moso bamboo genes, and provided a molecular basis underlying the phenomenon of sequentially elongated internodes from the base to the top. Several key pathways such as environmental adaptation, signal transduction, translation, transport and many metabolisms were identified as involved in the rapid elongation of bamboo culms. CONCLUSIONS: This is the first report on the temporal and spatial transcriptome and gene expression and microRNA profiling in a developing bamboo culms. In addition to gaining more insight into the unique growth characteristics of bamboo, we provide a good case study to analyze gene, microRNA expression and profiling of non-model plant species using high-throughput short-read sequencing. Also, we demonstrate that the integrated analysis of our multi-omics data, including transcriptome, post-transcriptome, proteome, yield more complete representations and additional biological insights, especially the complex dynamic processes occurring in Moso bamboo culms.


Subject(s)
High-Throughput Nucleotide Sequencing , MicroRNAs/genetics , Poaceae/genetics , RNA, Messenger/genetics , Poaceae/growth & development
19.
PLoS One ; 8(4): e62605, 2013.
Article in English | MEDLINE | ID: mdl-23638124

ABSTRACT

The objective of this study was to introduce application of the Richards equation on modelling and prediction of stand diameter distribution. The long-term repeated measurement data sets, consisted of 309 diameter frequency distributions from Chinese fir (Cunninghamia lanceolata) plantations in the southern China, were used. Also, 150 stands were used as fitting data, the other 159 stands were used for testing. Nonlinear regression method (NRM) or maximum likelihood estimates method (MLEM) were applied to estimate the parameters of models, and the parameter prediction method (PPM) and parameter recovery method (PRM) were used to predict the diameter distributions of unknown stands. Four main conclusions were obtained: (1) R distribution presented a more accurate simulation than three-parametric Weibull function; (2) the parameters p, q and r of R distribution proved to be its scale, location and shape parameters, and have a deep relationship with stand characteristics, which means the parameters of R distribution have good theoretical interpretation; (3) the ordinate of inflection point of R distribution has significant relativity with its skewness and kurtosis, and the fitted main distribution range for the cumulative diameter distribution of Chinese fir plantations was 0.4∼0.6; (4) the goodness-of-fit test showed diameter distributions of unknown stands can be well estimated by applying R distribution based on PRM or the combination of PPM and PRM under the condition that only quadratic mean DBH or plus stand age are known, and the non-rejection rates were near 80%, which are higher than the 72.33% non-rejection rate of three-parametric Weibull function based on the combination of PPM and PRM.


Subject(s)
Cunninghamia/anatomy & histology , Trees/anatomy & histology , Algorithms , China , Computer Simulation , Cunninghamia/physiology , Models, Biological , Models, Statistical , Trees/physiology
20.
Ecol Evol ; 2(8): 1996-2004, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22957200

ABSTRACT

As the largest K(+) transport gene family, KT/HAK/KUP family plays an important role in plant growth, development, and stress adaptation. However, there is limited information about this family in woody plant species. In this study, with genome-wide in-depth investigation, 31 Poplar KT/HAK/KUP transporter genes including six pairs of tandem duplicated and eight pairs of segmental duplicated paralogs have been identified, suggesting segmental and tandem duplication events contributed to the expansion of this family in Poplar. The combination of phylogenetic, exon structure and splice site, and paragon analysis revealed 11 pairs of Poplar KT/HAK/KUP duplicates. For these 11 pairs, all pairs are subject to purify selection, and asymmetric evolutionary rates have been found to occur in three pairs. This study might provide more insights into the underlying evolution mechanisms of trees acclimating to their natural habitat.

SELECTION OF CITATIONS
SEARCH DETAIL
...