Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 222
Filter
1.
Micron ; 184: 103665, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38850965

ABSTRACT

The High Resolution Transmission Electron Microscope (HRTEM) images provide valuable insights into the atomic microstructure, dislocation patterns, defects, and phase characteristics of materials. However, the current analysis and research of HRTEM images of crystal materials heavily rely on manual expertise, which is labor-intensive and susceptible to subjective errors. This study proposes a combined machine learning and deep learning approach to automatically partition the same phase regions in crystal HRTEM images. The entire image is traversed by a sliding window to compute the amplitude spectrum of the Fast Fourier Transform (FFT) in each window. The generated data is transformed into a 4-dimensional (4D) format. Principal component analysis (PCA) on this 4D data estimates the number of feature regions. Non-negative matrix factorization (NMF) then decomposes the data into a coefficient matrix representing feature region distribution, and a feature matrix corresponding to the FFT magnitude spectra. Phase recognition based on deep learning enables identifying the phase of each feature region, thereby achieving automatic segmentation and recognition of phase regions in HRTEM images of crystals. Experiments on zirconium and oxide nanoparticle HRTEM images demonstrate the proposed method achieve the consistency of manual analysis. Code and supplementary material are available at https://github.com/rememberBr/HRTEM2.

2.
Sci Total Environ ; 946: 174057, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914340

ABSTRACT

Root-associated microbiota provide great fitness to hosts under environmental stress. However, the underlying microecological mechanisms controlling the interaction between heavy metal-stressed plants and the microbiota are poorly understood. In this study, we screened and isolated representative amplicon sequence variants (strain M4) from rhizosphere soil samples of Trifolium repens L. growing in areas with high concentrations of heavy metals. To investigate the microecological mechanisms by which T. repens adapts to heavy metal stress in abandoned mining areas, we conducted potting experiments, bacterial growth promotion experiments, biofilm formation experiments, and chemotaxis experiments. The results showed that high concentrations of heavy metals significantly altered the rhizosphere bacterial community structure of T. repens and significantly enriched Microbacterium sp. Strain M4 was demonstrated to significantly increased the biomass and root length of T. repens under heavy metal stress. Additionally, L-proline and stigmasterol could promote bacterial growth and biofilm formation and induce chemotaxis for strain M4, suggesting that they are key rhizosphere secretions of T. repens for Microbacterium sp. recruitment. Our results suggested that T. repens adapted the heavy metal stress by reshaping rhizosphere secretions to modify the rhizosphere microbiota.

3.
Curr Med Sci ; 44(3): 554-560, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842773

ABSTRACT

OBJECTIVE: This study aimed to compare the performance of standard-definition white-light endoscopy (SD-WL), high-definition white-light endoscopy (HD-WL), and high-definition narrow-band imaging (HD-NBI) in detecting colorectal lesions in the Chinese population. METHODS: This was a multicenter, single-blind, randomized, controlled trial with a non-inferiority design. Patients undergoing endoscopy for physical examination, screening, and surveillance were enrolled from July 2017 to December 2020. The primary outcome measure was the adenoma detection rate (ADR), defined as the proportion of patients with at least one adenoma detected. The associated factors for detecting adenomas were assessed using univariate and multivariate logistic regression. RESULTS: Out of 653 eligible patients enrolled, data from 596 patients were analyzed. The ADRs were 34.5% in the SD-WL group, 33.5% in the HD-WL group, and 37.5% in the HD-NBI group (P=0.72). The advanced neoplasm detection rates (ANDRs) in the three arms were 17.1%, 15.5%, and 10.4% (P=0.17). No significant differences were found between the SD group and HD group regarding ADR or ANDR (ADR: 34.5% vs. 35.6%, P=0.79; ANDR: 17.1% vs. 13.0%, P=0.16, respectively). Similar results were observed between the HD-WL group and HD-NBI group (ADR: 33.5% vs. 37.7%, P=0.45; ANDR: 15.5% vs. 10.4%, P=0.18, respectively). In the univariate and multivariate logistic regression analyses, neither HD-WL nor HD-NBI led to a significant difference in overall adenoma detection compared to SD-WL (HD-WL: OR 0.91, P=0.69; HD-NBI: OR 1.15, P=0.80). CONCLUSION: HD-NBI and HD-WL are comparable to SD-WL for overall adenoma detection among Chinese outpatients. It can be concluded that HD-NBI or HD-WL is not superior to SD-WL, but more effective instruction may be needed to guide the selection of different endoscopic methods in the future. Our study's conclusions may aid in the efficient allocation and utilization of limited colonoscopy resources, especially advanced imaging technologies.


Subject(s)
Adenoma , Colonoscopy , Colorectal Neoplasms , Narrow Band Imaging , Humans , Male , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/diagnosis , Female , Middle Aged , Adenoma/diagnostic imaging , Adenoma/diagnosis , Narrow Band Imaging/methods , Colonoscopy/methods , Aged , Single-Blind Method , Light , Adult
4.
Food Chem ; 454: 139732, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38815327

ABSTRACT

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of flavonoids highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and flavonols (33.90 to 83.16 mg/kg FW). The volatile compounds with higher odor active value were selected to describe the aroma of spine grapes. Hexanal, (E)-2-hexenal and (E, Z)-2,6-nonadienal contributed to the higher herbaceous flavor to Baiputao and Ziqiu. ß-Damascenone and (E)-2-nonenal gave Baiputao a flavor with more floral, fruity and earthy. Their characteristic flavor compounds were subsequently revealed using multivariate statistical analysis. The results helped producers to further develop and utilize the spine grapes.


Subject(s)
Flavonoids , Flavoring Agents , Fruit , Gas Chromatography-Mass Spectrometry , Metabolomics , Vitis , Volatile Organic Compounds , Vitis/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , China , Flavoring Agents/chemistry , Flavoring Agents/analysis , Flavoring Agents/metabolism , Fruit/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Taste , Odorants/analysis , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Humans
5.
Phys Rev Lett ; 132(18): 180801, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759167

ABSTRACT

We report new experimental results on exotic spin-spin-velocity-dependent interactions between electron spins. We designed an elaborate setup that is equipped with two nitrogen-vacancy (NV) ensembles in diamonds. One of the NV ensembles serves as the spin source, while the other functions as the spin sensor. By coherently manipulating the quantum states of two NV ensembles and their relative velocity at the micrometer scale, we are able to scrutinize exotic spin-spin-velocity-dependent interactions at short force ranges. For a T-violating interaction, V_{6}, new limits on the corresponding coupling coefficient, f_{6}, have been established for the force range shorter than 1 cm. For a P,T-violating interaction, V_{14}, new constraints on the corresponding coupling coefficient, f_{14}, have been obtained for the force range shorter than 1 km.

6.
Hortic Res ; 11(4): uhae065, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38689696

ABSTRACT

Terpenoids are important contributors to the aroma of grapes and wines. Grapes contain terpenoids in both volatile free form and non-volatile glycosidic form, with the latter being more abundant. Glycosylated terpenoids are deemed as latent aromatic potentials for their essential role in adding to the flowery and fruity bouquet of wines. However, the transcriptional regulatory mechanism underlying glycosylated terpenoid biosynthesis remains poorly understood. Our prior study identified an AP2/ERF transcription factor, VviERF003, through DNA pull-down screening using the promoter of terpenoid glycosyltransferase VviGT14 gene. This study demonstrated that both genes were co-expressed and synchronized with the accumulation of glycosylated monoterpenoids during grape maturation. VviERF003 can bind to the VviGT14 promoter and promote its activity according to yeast one-hybrid and dual-luciferase assays. VviERF003 upregulated VviGT14 expression in vivo, leading to increased production of glycosylated monoterpenoids based on the evidence from overexpression or RNA interference in leaves, berry skins, and calli of grapes, as well as tomato fruits. Additionally, VviERF003 and VviGT14 expressions and glycosylated monoterpenoid levels were induced by ethylene in grapes. The findings suggest that VviERF003 is ethylene-responsive and stimulates glycosylated monoterpenoid biosynthesis through upregulating VviGT14 expression.

7.
BMC Plant Biol ; 24(1): 258, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594637

ABSTRACT

BACKGROUND: Weed control is essential for agricultural floor management in vineyards and the inter-row mulching is an eco-friendly practice to inhibit weed growth via filtering out photosynthetically active radiation. Besides weed suppression, inter-row mulching can influence grapevine growth and the accumulation of metabolites in grape berries. However, the complex interaction of multiple factors in the field challenges the understanding of molecular mechanisms on the regulated metabolites. In the current study, black geotextile inter-row mulch (M) was applied for two vintages (2016-2017) from anthesis to harvest. Metabolomics and transcriptomics analysis were conducted in two vintages, aiming to provide insights into metabolic and molecular responses of Cabernet Sauvignon grapes to M in a semi-arid climate. RESULTS: Upregulation of genes related to photosynthesis and heat shock proteins confirmed that M weakened the total light exposure and grapes suffered heat stress, resulting in lower sugar-acid ratio at harvest. Key genes responsible for enhancements in phenylalanine, glutamine, ornithine, arginine, and C6 alcohol concentrations, and the downward trend in ε-viniferin, anthocyanins, flavonols, terpenes, and norisoprenoids in M grapes were identified. In addition, several modules significantly correlated with the metabolic biomarkers through weighted correlation network analysis, and the potential key transcription factors regulating the above metabolites including VviGATA11, VviHSFA6B, and VviWRKY03 were also identified. CONCLUSION: This study provides a valuable overview of metabolic and transcriptomic responses of M grapes in semi-arid climates, which could facilitate understanding the complex regulatory network of metabolites in response to microclimate changes.


Subject(s)
Vitis , Wine , Vitis/metabolism , Transcriptome , Anthocyanins/metabolism , Microclimate , Farms , Fruit , Wine/analysis
8.
Phys Rev Lett ; 132(12): 123601, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38579231

ABSTRACT

The precise measurement of the gravity of Earth plays a pivotal role in various fundamental research and application fields. Although a few gravimeters have been reported to achieve this goal, miniaturization of high-precision gravimetry remains a challenge. In this work, we have proposed and demonstrated a miniaturized gravimetry operating at room temperature based on a diamagnetic levitated micro-oscillator with a proof mass of only 215 mg. Compared with the latest reported miniaturized gravimeters based on microelectromechanical systems, the performance of our gravimetry has substantial improvements in that an acceleration sensitivity of 15 µGal/sqrt[Hz] and a drift as low as 61 µGal per day have been reached. Based on this diamagnetic levitation gravimetry, we observed Earth tides, and the correlation coefficient between the experimental data and theoretical data reached 0.97. Some moderate foreseeable improvements can develop this diamagnetic levitation gravimetry into a chip size device, making it suitable for mobile platforms such as drones. Our advancement in gravimetry is expected to facilitate a multitude of applications, including underground density surveying and the forecasting of natural hazards.

9.
Inorg Chem ; 63(11): 4972-4981, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38437827

ABSTRACT

Predicting the defect levels of transition metal (TM) dopants in the band gap of crystals is critical in determining the charge states of TM dopants and explaining their electronic and optical properties. By analyzing the calculated charge transition levels and the crystal-field strengths of all the 3d-TM ions in several insulators, we demonstrate that the variation trend of the 3d-TM dopants in a crystal is a scaling of the variation of 3d-electron binding energies (ionization potential) of the free TM ions corrected by adding the contribution of the 3d-orbital's crystal-field splitting. We therefore develop a model to predict the relative location of TM ions' defect levels in the band gap from the defect level and crystal-field splitting of a reference TM ion in the host of concern. The model is applied to predict the defect levels of the series of TM ions in ß-Ga2O3 and ZnO, which have moderate to small band gaps, making some of the levels fall into the conduction or valence bands. These results show that the model may serve as a quick reference for related material design and optimization.

10.
Fitoterapia ; 175: 105916, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527590

ABSTRACT

Six previously unreported solanidane steroidal alkaloids, namely lyrasolanosides A-F, were isolated from Solanum lyratum. In addition, five known steroidal alkaloids were also identified. The structures of these compounds were determined through the use of NMR, HRESIMS,UV, IR and ECD analysis. To assess their bioactivities, the cytotoxic effects of the six previously unreported compounds were evaluated on A549 cells. The results revealed that lyrasolanoside B (2) exhibited the highest potency among them. Lyrasolanoside B (2) exhibited significant inhibition of cell migration, invasion, and adhesion dramatically. Mechanistically, it was found to suppress the activity of JAK2/STAT3 signaling pathway by downregulating the expression of phosphorylated JAK2/STAT3 in an exosome-dependent manner. In addition, lyrasolanoside B (2) was found to significantly upregulate the expression of E-cadherin and downregulate the expression of N-cadherin and vimentin. These findings indicate that lyrasolanoside B (2) inhibits the metastasis of A549 cells by suppressing exosome-mediated EMT. These findings suggest that lyrasolanoside B (2) may inhibit the metastasis of lung cancer by regulating A549-derived exosomes.


Subject(s)
Solanum , Humans , A549 Cells , Molecular Structure , Solanum/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Movement/drug effects , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Solanaceous Alkaloids/pharmacology , Solanaceous Alkaloids/isolation & purification , Signal Transduction/drug effects , Alkaloids/pharmacology , Alkaloids/isolation & purification , China
11.
Foods ; 13(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38338629

ABSTRACT

The loss of red hue in dry red wine has been a persistent issue for wine enterprises in western China. We investigated the changes in anthocyanins and non-anthocyanin phenols during the industrial-scale fermentation and one-year bottle aging of Vitis vinifera L. Merlot and Vitis vinifera L. Marselan, respectively, using the grapes in the Ningxia region. We also examined their correlation with color characterization. The study found that both anthocyanins and non-anthocyanin phenolics were rapidly extracted from grapes during alcohol fermentation. However, their concentrations decreased rapidly during malolactic fermentation. On the other hand, Vitisin A and Vitisin B were formed during alcoholic fermentation and decreased slowly from malolactic fermentation to storage period. Directly polymerized pigments (F-A and A-F), bridged polymerized pigments (A-e-F), and flavanyl-pyranoanthocyanins (A-v-F) from the reactions of anthocyanins (A) and flavan-3-ols (F), as well as pinotins were generated during the later stages of alcoholic fermentation, and remained at a high level throughout malolactic fermentation and bottle storage. Partial least squares regression and Pearson correlation analyses revealed that the red hue (a* value) of 'Merlot' and 'Marselan' wines was closely associated with monomeric anthocyanins and F-A type pigments. Furthermore, four pinotin components were positively correlated with the red hue (a* value) of 'Merlot' wine. These primary red components of the two varieties had a positive correlation with the level of flavan-3-ols. The data suggest that elevating the flavan-3-ol concentration during fermentation aids in improving the color stability of red wine.

12.
Inorg Chem ; 63(6): 3152-3164, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38305730

ABSTRACT

Sb-doped Cd-based inorganic halides, with varying connections of CdCl6 octahedra ranging from 0D to 3D, exhibit a variety of photoluminescent properties. Single-band emission is observed in Sb-doped Rb4CdCl6 (0D) and Cs2CdCl4 (2D), while dual-band emission is seen in Sb-doped RbCdCl3 (1D) and CsCdCl3 (3D). Density-functional-based first-principles calculations were conducted. The results reveal that cation vacancies, acting as charge compensators, influence the luminescence properties of dopant centers. In CsCdCl3, the local cation vacancy VCd″ for Sb3+ at the Cd2+ site ([Sb□Cl9]6-) significantly modifies the photoluminescence property, accounting for the observed dual-band emission alongside the nonlocal compensation case. This effect is insignificant in Sb-doped Rb4CdCl6, RbCdCl3, and Cs2CdCl4, due to the large distances or high formation energies of Cd vacancies in these hosts. However, in Sb-doped RbCdCl3, two different potential energy minima, one that involves typical structure relaxation and the other that is off-center, lead to the observed dual-band emission. Furthermore, the shift of the charge transition level illustrates the different temperature dependences of the dual-band emission caused by the charge-compensating point defects. These insights not only enhance our understanding of luminescent materials based on halides containing ns2 dopants but also provide valuable guidance for the design and optimization of luminescent materials.

13.
J Agric Food Chem ; 72(2): 1228-1243, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38181223

ABSTRACT

It is widely accepted that prevéraison application of naphthaleneacetic acid (NAA) can delay the ripening of grapes and improve their quality. However, how NAA impacts grape aroma compound concentrations remains unclear. This study incorporated the analyses of aroma metabolome, phytohormones, and transcriptome of Vitis vinifera L. cv. Cabernet Sauvignon grapes cultivated in continental arid/semiarid regions of western China. The analyses demonstrated that NAA application increased ß-damascenone and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) in the harvested grapes by delaying véraison and upregulating VvPSY1 and VvCCD4b expressions. Additionally, NAA treatment decreased 2-isobutyl-3-methoxypyrazine (IBMP) at the same phenological stage. Notably, abscisic acid (ABA) levels increased in NAA-treated grapes during véraison, which triggered further changes in norisoprenoid metabolisms. The ABA-responsive factor VvABF2 was potentially involved in VvPSY1 positive modulation, while the auxin response factor VvARF10 may play a role in VvCCD4b upregulation and VvOMT2 downregulation during NAA induction. VvARF10 possibly acts as a crosstalk node between the ABA and auxin signaling pathways following NAA treatment in regulating aroma biosynthesis.


Subject(s)
Vitis , Wine , Abscisic Acid/metabolism , Vitis/genetics , Vitis/metabolism , Indoleacetic Acids/metabolism , Odorants/analysis , Transcriptome , Fruit/chemistry , Metabolome , Naphthaleneacetic Acids/analysis , Wine/analysis
14.
Nat Nanotechnol ; 19(2): 160-165, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225359

ABSTRACT

Exceptional points (EPs) are singularities in non-Hermitian systems, where k (k ≥ 2) eigenvalues and eigenstates coalesce. High-order EPs exhibit richer topological characteristics and better sensing performance than second-order EPs. Theory predicts even richer non-Hermitian topological phases for high-order EP geometries, such as lines or rings formed entirely by high-order EPs. However, experimental exploration of high-order EP geometries has hitherto proved difficult due to the demand for more degrees of freedom in the Hamiltonian's parameter space or a higher level of symmetries. Here we observe a third-order exceptional line in an atomic-scale system. To this end, we use a nitrogen-vacancy spin in diamond and introduce multiple symmetries in the non-Hermitian Hamiltonian realized with the system. Furthermore, we show that the symmetries play an essential role in the occurrence of high-order EP geometries. Our approach can in future be further applied to explore high-order EP-related topological physics at the atomic scale and, potentially, for applications of high-order EPs in quantum technologies.

15.
Phys Rev Lett ; 131(22): 220401, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38101345

ABSTRACT

The Jarzynski equality (JE), which connects the equilibrium free energy with nonequilibrium work statistics, plays a crucial role in quantum thermodynamics. Although practical quantum systems are usually multilevel systems, most tests of the JE were executed in two-level systems. A rigorous test of the JE by directly measuring the work distribution of a physical process in a high-dimensional quantum system remains elusive. Here, we report an experimental test of the JE in a single spin-1 system. We realized nondemolition projective measurement of this three-level system via cascading high-fidelity single-shot readouts and directly measured the work distribution utilizing the two-point measurement protocol. The validity of the JE was verified from the nonadiabatic to adiabatic zone and under different effective temperatures. Our work puts the JE on a solid experimental foundation and makes the nitrogen-vacancy (NV) center system a mature toolbox to perform advanced experiments of stochastic quantum thermodynamics.

16.
Food Res Int ; 174(Pt 1): 113508, 2023 12.
Article in English | MEDLINE | ID: mdl-37986505

ABSTRACT

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties and harvest date on the volatolomics of wine to provide a better insight into single-vineyard wines. Six Cabernet Sauvignon vineyards were selected in a semi-arid region to produce their wines at three harvest ripeness levels ranging from 23°Brix-28°Brix in three seasons (2019-2021). Results showed that among all six vineyards, the vineyard with the highest soil pH produced wines with lower C6 alcohols and herbaceous aroma. Moderate nutrition in soils was beneficial for the accumulation of ß-damascenone and enhanced fruity and floral aroma in wines while over-fertile soil produced wines with the lowest sensory score. As the harvest ripeness elevated, the wine's fruity and floral aroma intensity decreased. Through advanced network analysis, the key volatiles such as ß-damascenone, ethy1 lactate, and isoamyl octanoate, and their interaction in affecting wine sensory scores were evaluated. Our study provided a concept for producing premium single-vineyard wines.


Subject(s)
Vitis , Wine , Wine/analysis , Vitis/chemistry , Farms , Soil
17.
Food Chem X ; 19: 100772, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780257

ABSTRACT

Recently, revealing the terroir influence on wine chemical features has drawn increasing interest. This study aimed to explain how wine flavonoid signatures were altered by vineyard parcel, harvest ripeness, vintage and bottle aging. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to produce wines at three harvest ripeness in three seasons (2019-2021) and aged for three years. The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition. Results showed high vineyard pH (> 8.5) could accelerate grape ripening rate and increase wine flavonol concentration. Vineyards with moderate nutrition produced wines with abundant anthocyanin derivatives and maintained color characteristics during aging. The role of detailed anthocyanin derivatives in regulating wine color was clarified. As the harvest ripeness elevated, wine's flavonoid profiles were altered and gained a higher red color intensity. This work provides chemical mechanisms underlying single-vineyard wines and a theoretical basis for targeted wine production.

18.
Phys Rev Lett ; 131(7): 071801, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37656856

ABSTRACT

Searching for exotic interactions provides a path for exploring new particles beyond the standard model. Here, we used an ensemble-NV-diamond magnetometer to search for an exotic spin- and velocity-dependent interaction between polarized electron spins and unpolarized nucleons at the micrometer scale. A thin layer of nitrogen-vacancy electronic spin ensemble in diamond is utilized as both the solid-state spin quantum sensor and the polarized electron source, and a vibrating lead sphere serves as the moving unpolarized nucleon source. The exotic interaction is searched by detecting the possible effective magnetic field induced by the moving unpolarized nucleon source using the ensemble-NV-diamond magnetometer. Our result establishes new bounds for the coupling parameter f_{⊥} within the force range from 5 to 400 µm. The upper limit of the coupling parameter at 100 µm is |f_{⊥}|≤1.1×10^{-11}, which is 3 orders of magnitude more stringent than the previous constraint. This result shows that NV ensemble can be a promising platform to search for hypothetical particles beyond the standard model.

19.
ACS Appl Mater Interfaces ; 15(37): 43226-43233, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37695948

ABSTRACT

Undoped Y2Ti2O7 exhibits impurity emission bands at low temperatures due to Mn4+ and Cr3+, as established by codoping with these ions. Contrary to a recent report by Wang et al., ACS Appl. Mater. Interfaces 2022, 14, 36834-36844, we do not observe Bi3+ emission in this codoped host, as also is the case for Fe3+. The emission reported in that paper as being due to Bi3+ in fact corresponds to Cr3+ emission. The Cr3+ and Mn4+ emissions are quenched with increasing temperature, so that Mn4+ emission is scarcely observed above 80 K. We present variable temperature optical data for Y2Ti2O7 and this host codoped with Mn, Cr, Fe, and Bi, as well as a theoretical justification of our results.

20.
Sci Total Environ ; 904: 166871, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37683844

ABSTRACT

The drivers and mechanisms underlying succession and the spontaneous formation of plant communities in mining wasteland remain largely unknown. This study investigated the use of nature-based restoration to facilitate the recovery of viable plant communities in mining wasteland. It was found that scientific analyses of spontaneously formed plant communities in abandoned mining areas can provide insights for nature-based restoration. A chronosequence ("space for time") approach was used to establish sites representing three successional periods with six successional stages, and 90 quadrats were constructed to investigate changes in plant species and functional diversity during succession in abandoned PbZn mining areas. A total of 140 soil samples were collected to identify changes in soil properties, including plant nutrient and heavy metal concentrations. Then, this paper used structural equation models to analyze the mechanisms that drive succession. It was found that the functional diversity of plant communities fluctuated substantially during succession. Species had similar functional traits in early and mid-succession, but traits tended to diverge during late succession. Soil bulk density and soil organic matter gradually increased during succession. Total nitrogen (N), pH, and soil Zn concentrations first increased and then decreased during succession. Concentrations of Mn and Cd gradually decreased during succession. During early succession, soil organic matter was the key factor driving plant colonization and succession. During mid-succession, soil Zn functioned as an environmental filter factor limiting the rates of succession in mining wasteland communities. During late succession, soil bulk density and competition for nutrient resources contributed to more balanced differentiation among plant species. This thesis proposed that a nature-based strategy for the stabilization of abandoned mining lands could facilitate effective plant community restoration that promotes ecosystem services and functioning.


Subject(s)
Ecosystem , Metals, Heavy , China , Metals, Heavy/analysis , Plants , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...