Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(28): e2401575, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38767189

ABSTRACT

Practical aqueous zinc-ion batteries require low-cost thin zinc anodes with long-term reversible stripping/depositing. However, thin zinc anodes encounter more severe issues than thick zinc, such as dendrites and uneven stripping, resulting in subpar performance and limited lifetimes. Here, this work proposes a three-in-one zinc anode obtained by a large-scale two-step method to address the above issues. In a three-in-one zinc anode, the copper foil as an inactive current collector solves the gradual reduction of the active area when only the pure zinc as an active current collector. This work develops an automatic electroplating device that can continuously deposit a zinc layer on a conducting foil to meet the demand for zinc-coated copper foils. The sodium carboxymethylcellulose (CMC)-zinc fluoride (ZnF2) protective layer prevents direct contact between zinc and separator, and provides a uniform and sufficient supply of zinc ions. The CMC-ZnF2-coated copper foil performs up to 3000 reversible zinc deposition/stripping cycles with a cumulative capacity of 6 Ah cm-2 and an average Coulombic efficiency of 99.94%. The Zn||ZnVO cell using the three-in-one anode achieved a high capacity retention of over 70% after 15 000 cycles. The proposed three-in-one anode and the automatic electroplating device will facilitate industrialization of practical thin zinc anodes.

2.
Chem Commun (Camb) ; 60(9): 1100-1103, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38165284

ABSTRACT

A mitochondria-targeted ratiometric fluorescent probe (Mito-Zn) was first designed and synthesized with dual emissions both located in the near-infrared region, for Zn2+ detection with high sensitivity and selectivity. By using the developed Mito-Zn, a high level of Zn2+ in the depressed mouse brain was discovered for the first time.


Subject(s)
Brain , Fluorescent Dyes , Mice , Animals , Brain/diagnostic imaging , Mitochondria , Zinc
3.
Small ; 20(15): e2307357, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38012538

ABSTRACT

Hydrogen reduction reaction (HER) and corrosion limit the long-life cycle of zinc-ion batteries. However, hydrophilic separators are unable to prevent direct contact between water and electrodes, and hydrophobic separators have difficulty in transporting electrolytes. In this work, an inorganic oxide-based "hydrophobic-hydrophilic-hydrophobic" self-assembled separator system is proposed. The hydrophobic layer consists of a porous structure, which can isolate a large amount of free water to avoid HER and corrosion reactions, and can transport electrolyte by binding water. The middle hydrophilic layer acts as a storage layer consisting of the GF separator, storing large amounts of electrolyte for proper circulation. By using this structure separator, Zn||Zn symmetric cell achieve 2200 h stable cycle life at 5 mA cm-2 and 1mAh cm-2 and still shows a long life of 1800 h at 10 mA cm-2 and 1mAh cm-2. The assembled Zn||VO2 full cell displays high specific capacity and excellent long-term durability of 60.4% capacity retention after 1000 cycles at 2C. The assembled Zn||VO2 pouch full cell displays high specific capacity of 172.5mAh g-1 after 40 cycles at 0.5C. Changing the inorganic oxide materials, the hydrophobic-hydrophilic-hydrophobic structure of the separators still has excellent performance. This work provides a new idea for the engineering of water-based battery separators.

4.
Adv Mater ; 35(26): e2300620, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36946149

ABSTRACT

Aqueous Zn-ion batteries are plagued by a short lifespan caused by localized dendrites. High-concentration electrolytes are favorable for dense Zn deposition but have poor performance in batteries with glass-fiber separators. In contrast, low-concentration electrolytes can wet the separators well, ensuring the migration of zinc ions, but the dendrites grow rapidly. In this work, we propose an electrolyte gradient strategy wherein a zinc-ion concentration gradient is established from the anode to the separator, ensuring that the separator keeps a good wettability in low-concentration areas and the zinc anode achieves dendrite-free deposition in a high-concentration area. By using this strategy in a common electrolyte, zinc sulfate, a Zn||Zn symmetric cell achieves 14 000 ultralong cycles (exceeding 8 months) at 5 mA cm-2 and 1 mAh cm-2 . When the current is further increased to 20 mA cm-2 , the symmetric cell could still run for over 10 000 cycles. Assembled Zn||NVO full cells also demonstrate prominent performance. At a high current of 16 mA cm-2 , the NVO cathode with high loading (8 mg cm-2 ) still has a capacity of 58% after 1200 cycles. Overall, the gradient electrolyte strategy provides a promising approach for practical long-life Zn anodes with the advantages of simple operation and low cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...