Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Bot ; 68(3): 727-737, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28035023

ABSTRACT

The promotive effects of brassinosteroids (BRs) on plant growth and development have been widely investigated; however, it is not known whether BRs directly affect nutrient uptake. Here, we explored the possibility of a direct relationship between BRs and ammonium uptake via AMT1-type genes in rice (Oryza sativa). BR treatment increased the expression of AMT1;1 and AMT1;2, whereas in the mutant d61-1, which is defective in the BR-receptor gene BRI1, BR-dependent expression of these genes was suppressed. We then employed Related to ABI3/VP1-Like 1 (RAVL1), which is involved in BR homeostasis, to investigate BR-mediated AMT1 expression and its effect on NH4+ uptake in rice roots. AMT1;2 expression was lower in the ravl1 mutant, but higher in the RAVL1-overexpressing lines. EMSA and ChIP analyses showed that RAVL1 activates the expression of AMT1;2 by directly binding to E-box motifs in its promoter. Moreover, 15NH4+ uptake, cellular ammonium contents, and root responses to methyl-ammonium strongly depended on RAVL1 levels. Analysing AMT1;2 expression levels in different crosses between BRI1 and RAVL1 mutant and overexpression lines indicated that RAVL1 acts downstream of BRI1 in the regulation of AMT1;2. Thus, the present study shows how BRs may be involved in the transcriptional regulation of nutrient transporters to modulate their uptake capacity.


Subject(s)
Brassinosteroids/metabolism , Cation Transport Proteins/genetics , Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/genetics , Cation Transport Proteins/metabolism , Homeostasis , Oryza/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL