Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 43(21): 3262-3268, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33944678

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) as polar organic pollutants, their potential harm to the environment has caused widespread concern. This study describes a simple method to prepare modified aerobic granular sludge (AGS) by hydroxypropyl-ß-cyclodextrin (HP-ß-CD). Using HP-ß-CD modified AGS as the adsorbent, the removal of specific PAHs: Fluoranthene (Fla) reached 95% comparing to 80% of the unmodified AGS. The removal of Fla was related to initial concentration, temperature and ion concentration (Na+, Mg2+). The removal efficiency of Fla reached 96.27%, 94.26% and 93.69%, when initial concentration of Fla was 10, 15 and 20 µmol/L. At temperatures of 15°C, 30°C and 45°C, the removal efficiency of Fla (15 µmol/L) gradually improved from 87.20% to 94.84% and 95.73%. The presence of Na+ and Mg2+ ions led to the deterioration of PAHs removal. With the increase of Na+ and Mg2+ concentrations, the removal efficiency of modified AGS on PAHs decreased by 3.9% and 6.5%, respectively. These findings indicate the potential application of cyclodextrins as the active sites of a complex modified polymer network for PAHs wastewater treatment.


Subject(s)
Cyclodextrins , Polycyclic Aromatic Hydrocarbons , 2-Hydroxypropyl-beta-cyclodextrin , Cyclodextrins/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Sewage , Temperature
2.
Sci Total Environ ; 786: 147338, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-33971607

ABSTRACT

Both potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) are widely present in soil contaminated by steel industries. This study assessed the vertical variation (at 20 cm, 40 cm, 60 cm, 80 cm, 120 cm, and 150 cm depth) of bacterial abundance, community structure, functional genes related to PAHs degradation, and community co-occurrence patterns in an old steel plant soils which contaminated by PTEs and PAHs for 60 years. The excessive PAHs and PTEs in steel plant soils were benzo (a) pyrene, benzo (b) fluoranthene, dibenzo (a, h) anthracene, indeno (1,2,3-c, d) pyrene, and lead (Pb). The abundance and composition of bacterial community considerably changed with soil depth in two study areas with different pollution degrees. The results of co-occurrence network analysis indicated that the top genera in blast furnace zone identified as the potential keystone taxa were Haliangium, Blastococcus, Nitrospira, and Sulfurifustis. And in coking zone, the top genera were Gaiella. The predictions of bacterial metabolism function using PICRUSt showed that the PAHs-PTEs contaminated soil still had the potential for PAHs degradation, but most PTEs negatively correlated with PAHs degradation genes. The total sulfur (TS), acenaphthene (ANA), and Zinc (Zn) were the key factors to drive development of bacterial communities in the steel plant soils. As far as we know, this is the first investigation of vertical distribution and interaction of the bacterial microbiota in the aging soils of steel plant contaminated with PTEs and PAHs.


Subject(s)
Microbiota , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Steel
SELECTION OF CITATIONS
SEARCH DETAIL
...