Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(50): 56065-56073, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36508176

ABSTRACT

Smart windows with tunable optical properties for energy-saving and privacy protection applications are receiving increasing attention. However, current studies of smart windows either involve the use of complex material preparation processes and complex device systems for window switching or continue to face several challenges, including low luminous transmittance, low luminous and solar modulation, and narrow wavelength range management problems. Here, we report a dual-responsive smart window that achieves solar light management in the range of 200-2500 nm. This smart window is fabricated by combining a reversible thermoresponsive hydrogel that acts as a thermochromic material with a ZnO/Ag/ZnO multilayer film that acts as a transparent heater. The as-prepared smart window can modulate solar light over a range from ultraviolet to infrared and achieves active responses to high-temperature weather, with passive responses being produced through electrical heating. The smart window shows high luminous transmittance (81.7%) and high luminous modulation (81.6%), together with an outstanding solar modulation performance (62.9%). In outdoor demonstrations, the as-prepared smart window exhibited a promising temperature regulation ability under strong solar irradiation. Therefore, the proposed smart window promises to provide a simple and effective energy management technology for buildings.

2.
Biomimetics (Basel) ; 7(4)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36412728

ABSTRACT

With the development of micro/nano-optics, metasurfaces are gaining increasing attention working as novel electromagnetic wave control devices. Among which, metalenses have been developed and applied as a typical application of metasurfaces owing to their unique optical properties. However, most of those previous metalenses can only produce one focal point, which severely limits their applications. Inspired by the fly compound eye, we propose a special kind of spatial multifocal metalens. Our metalenses can reverse the polarization state of the incident circularly polarized light, which is then focused. In addition, a horizontally aligned multifocal metalens can be achieved by designing reasonable phase and region distributions, which is similar to a vertically aligned one. Most significantly, a spatially 3D-arrayed multifocal metalens with low crosstalk is well achieved by combining these two distribution methods. The proposed bionic 3D-arrayed multifocal metalens with amazing focusing effect promises applications in imaging, nanoparticle manipulation, optical communication, and other fields.

3.
ACS Appl Mater Interfaces ; 13(15): 18120-18127, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33830721

ABSTRACT

Four-dimensional (4D) printing, which enables 3D printed structures to alter shapes over time, is attracting increasing attention because of its exciting potential in various applications. Among all the 4D printing materials, shape memory polymers (SMPs) have a higher stiffness and faster response rate and therefore are considered as one of the most promising 4D printing materials. However, the current studies of SMP-based 4D printing mainly focused on the deformation behavior and structural design of 4D printed structures. An additional function such as color change is desired for 4D printed structure, which would be potentially beneficial to the applications such as anti-counterfeiting, encryption, and bioinspired camouflage. In this paper, we report an ultraviolet (UV)-curable and thermochromic (UVT) SMP system that enables color-changeable 4D printing. The UVT SMP system is acrylate-based, thus highly UV-curable and compatible with PµSL-based high-resolution 3D printing technique. Thermochromism is imparted by adding the thermochromic microcapsules to the UVT SMP system, which allows the printed structures to reversibly change colors upon heating and cooling. To demonstrate its extraordinary thermochromic and mechanical performance, we use UVT SMP to print QR codes and multilevel anti-counterfeiting patterns which can hide the visible information at room temperature and visualize the information by encrypting, decrypting, and encrypting again steps with the shape-color recovery process. The development of UVT SMP will significantly advance current applications of SMP-based 4D printing, especially for anti-counterfeiting and safe data recording.

SELECTION OF CITATIONS
SEARCH DETAIL
...