Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 32(6): 824-33, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21642951

ABSTRACT

AIM: To further characterize the functional role of cystic fibrosis transmembrane conductance regulator (CFTR) in early and late (second window) ischemic preconditioning (IPC)- and postconditioning (POC)-mediated cardioprotection against ischemia/reperfusion (I/R) injury. METHODS: CFTR knockout (CFTR(-/-)) mice and age- and gender-matched wild-type (CFTR(+/+)) and heterozygous (CFTR(+/-)) mice were used. In in vivo studies, the animals were subjected to a 30-min coronary occlusion followed by a 40-min reperfusion. In ex vivo (isolate heart) studies, a 45-min global ischemia was applied. To evaluate apoptosis, the level of activated caspase 3 and TdT-mediated dUTP-X nick end labeling (TUNEL) were examined. RESULTS: In the in vivo I/R models, early IPC significantly reduced the myocardial infarct size in wild-type (CFTR(+/+)) (from 40.4% ± 5.3% to 10.4% ± 2.0%, n=8, P<0.001) and heterozygous (CFTR(+/-)) littermates (from 39.4% ± 2.4% to 15.4% ± 5.1%, n=6, P<0.001) but failed to protect CFTR knockout (CFTR(-/-)) mice from I/R induced myocardial infarction (46.9% ± 6.2% vs 55.5% ± 7.8%, n=6, P>0.5). Similar results were observed in the in vivo late IPC experiments. Furthermore, in both in vivo and ex vivo I/R models, POC significantly reduced myocardial infarction in wild-type mice, but not in CFTR knockout mice. In ex vivo I/R models, targeted inactivation of CFTR gene abolished the protective effects of IPC against I/R-induced apoptosis. CONCLUSION: These results provide compelling evidence for a critical role for CFTR Cl(-) channels in IPC- and POC-mediated cardioprotection against I/R-induced myocardial injury.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Ischemic Postconditioning , Ischemic Preconditioning, Myocardial , Myocardial Reperfusion Injury/prevention & control , Animals , Apoptosis , Caspase 3/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Male , Mice , Mice, Inbred CFTR , Mice, Knockout , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Perfusion
SELECTION OF CITATIONS
SEARCH DETAIL
...