Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38884655

ABSTRACT

Microalgae, compared to macroalgae, exhibit advantages such as rapid growth rates, feasible large-scale cultivation, and high fucoxanthin content. Among these microalgae, Phaeodactylum tricornutum emerges as an optimal source for fucoxanthin production. This paper comprehensively reviews the research progress on fucoxanthin production using Phaeodactylum tricornutum from 2012 to 2022, offering detailed insights into various aspects, including strain selection, media optimization, nutritional requirements, lighting conditions, cell harvesting techniques, extraction solvents, extraction methodologies, as well as downstream separation and purification processes. Additionally, an economic analysis is performed to assess the costs of fucoxanthin production from Phaeodactylum tricornutum, with a comparative perspective to astaxanthin production from Haematococcus pluvialis. Lastly, this paper discusses the current challenges and future opportunities in this research field, serving as a valuable resource for researchers, producers, and industry managers seeking to further advance this domain.

2.
Front Hum Neurosci ; 18: 1380739, 2024.
Article in English | MEDLINE | ID: mdl-38715702

ABSTRACT

Objective: This study aims to investigate the influence of the cerebellum on visual selective attention function and its neuromodulatory mechanism in patients with multiple lacunar cerebral infarction (MLCI). Methods: A retrospective analysis was conducted on 210 patients admitted with MLCI from January 2016 to May 2022. Analyzed the electrophysiological characteristics of the P3a and P3b components of vision in both groups, as well as source reconstruction simulations of dipole activation in the brains of the two groups, and analyzed the brain regions with differences in activation strength between the two groups. Results: This study found that there was no significant difference in peak amplitude between the two groups, but compared with the control group, the peak latency of the case group was significantly prolonged. Specifically, the P3a peak latency induced by the novel stimulus was longer than that induced by the target stimulus P3b peak latency. Source reconstruction results showed decreased and increased activation in several brain regions in the case group compared to the control group. Conclusion: The study suggests that the impairment of distracted attention capture is more pronounced in patients with MLCI. The cerebellum indirectly influences the ventral and dorsal frontoparietal attention networks by modulating the levels of excitation and inhibition within the cerebral cortex of the attention network. This may represent a potential mechanism through which the cerebellum regulates visual selective attention information in MLCI patients.

3.
Mar Pollut Bull ; 201: 116241, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479325

ABSTRACT

Nutrients directly control the level of primary productivity and are crucial for the stability of marine ecosystems. Focusing on the survey results in August 2020 of the Yangtze River Estuary, this study elucidated the distribution characteristics and controlling factors of three nutrients: NO3-N, PO4-P, SiO3-Si. The results showed that the concentrations of NO3-N, PO4-P, SiO3-Si in the study area were generally higher near the shore than far shore, with average concentrations of 11.40, 0.70, and 23.73 µmol/L, respectively. The ocean currents drove the distribution of nutrients, and the transport of CDW and YSCC increased the nutrient levels. The resuspension of sediment caused by factors such as terrain and weather may lead to an abnormal increase in nutrients in the bottom waters. The main controlling factors of the three nutrients were different. NO3-N was significantly affected by human activities, PO4-P and SiO3-Si were mainly affected by natural factors.


Subject(s)
Estuaries , Rivers , Humans , Ecosystem , Seasons , Nutrients , China , Environmental Monitoring
4.
J Environ Manage ; 354: 120330, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364538

ABSTRACT

In an anaerobic sequential batch reactor (SBR), marine anammox bacteria (MAB) were able to enhance microbial activity in nitrogen-rich saline wastewater and it was significantly affected by influent substrate composition and loading strength. This study therefore enhanced nitrogen removal efficiency by adjusting the influent nitrogen loading strength of MAB-inoculated anaerobic SBRs and assessed the correlation with the bacterial community. The results displayed that the system obtained optimal nitrogen removal efficiency (TN = 83.52%, NH4-N = 90.14%, and NO2-N = 83.57%) as the strength of influent nitrogen loading was increased to 201.35 mg L-1 for NH4-N and 266.42 mg L-1 for NO2-N. Moreover, the increase in the strength of influent nitrogen loading also enhanced the anammox 16S rRNA abundance (4.09 × 108 copies g-1) and ladderanes content (22.49 ng g-1dw). Analysis of 15N isotope further illustrated that all systems were dominated by anammox (average ra = 95.22%). In conclusion, these findings provide scientific guidance for the management of eutrophic seawater and contribute to the realization of industrial applications for the treatment of nitrogen-rich saline wastewater.


Subject(s)
Nitrogen , Wastewater , Nitrogen/analysis , Denitrification , Anaerobic Ammonia Oxidation , Nitrogen Dioxide , RNA, Ribosomal, 16S , Bioreactors/microbiology , Bacteria , Oxidation-Reduction
5.
Sci Total Environ ; 912: 168939, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38029978

ABSTRACT

The mobilization of arsenic (As) at the sediment-water interface (SWI) is crucial for determining the accumulation of dissolved As to potentially toxic levels. However, the specific impacts of redox processes involving iron (Fe) and sulfur (S), as well as microbial activities occurring in sediments, on As mobilization at the marine SWI remain poorly understood. In this study, we investigated As mobilization at the SWI in the Changjiang Estuary during three different seasons with different benthic redox conditions. The preferential reduction of arsenate (As(V)) to arsenite (As(III)) and subsequent re-adsorption onto newly formed crystalline Fe oxides restricted As release in the As(V) reduction layer. Enhanced Fe(III) reduction in the Fe(III) reduction layer contributed to As release, while the presence of low As-high Fe-high SO42- levels resulted in As removal through adsorption onto pyrite in the sulfate reduction layer. Analysis of functional genes indicated that As(V) in sediments was released into porewater through the reductive dissolution of As(V)-bearing Fe(III) oxides by Geobacter species, followed by microbial reduction of the liberated As(V) to As(III) by microbes carrying the arrA gene. The dominant pathway governing As mobilization at the SWI in the Changjiang Estuary shifted from microbial reduction control during the hypoxic summer to Fe redox control during the aerobic autumn and winter. These findings provide valuable insights into the complex mechanisms driving As mobilization and highlight the importance of considering seasonal variations in understanding As dynamics at the marine SWI.


Subject(s)
Arsenic , Arsenic/analysis , Ferric Compounds/chemistry , Seasons , Water/analysis , Oxidation-Reduction , Geologic Sediments , Oxides
6.
Ying Yong Sheng Tai Xue Bao ; 34(11): 3114-3126, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37997423

ABSTRACT

Fluoroquinolone antibiotics (FQs) are one of the most widely used antibiotics, which are new pollutants with 'pseudo persistence' in the environment, causing great ecological risks. FQs could change the structure and function of microbial communities and affect nitrogen cycling mediated by microorganisms. Consequently, FQs would change the composition of various types of nitrogen in the environment and exert a significant impact on the global nitrogen cycling. We encapsulated the distribution of FQs in the environment and its impacts on nitrogen cycling mediated by microorganisms, explained the role of FQs in each key process of nitrogen cycling, aiming to provide an important reference for revealing the ecological effects of FQs. Generally, FQs could be detected in various environmental media, with significant differences in the concentration and types of FQs in different environments. Ofloxacin, norfloxacin, ciprofloxacin, and enrofloxacin are the four types of FQs with the highest detection frequency and concentration. The effect of FQs on nitrogen cycling deeply depends on typical characteristics of concentration and species. FQs mainly inhibit nitrification by reducing the abundance of amoA gene related to ammoxidation process and the abundance and composition of ammoxidation bacteria. FQs inhibits nitrification by reducing the abundance and composition of microbial communities. The denitrification process is mainly inhibited due to the reduction of the activity of related enzymes and the abundance of genes such as narG, nirS, norB, and nosZ genes, as well as the abundance and composition of denitrifying functional microorganisms. The process of anammox is restricted due to the reduction of the abundance, composition and hzo gene abundance of anaerobic anammox bacteria. FQs lead to the reduction of active nitrogen removal and the increase of N2O release in the environment, with further environmental problems such as water eutrophication and greenhouse effect. In the future, we should pay attention to the effects of low concentration FQs and complex antibiotics on the nitrogen cycling, and focus on the effects of FQs on the changes of nitrogen cycle-related microbial monomers and communities.


Subject(s)
Fluoroquinolones , Nitrogen Cycle , Fluoroquinolones/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Environmental Pollution , Nitrogen , Denitrification
7.
J Neuroimmunol ; 385: 578250, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38029646

ABSTRACT

OBJECTIVE: To investigate whether sEH inhibitor AUDA can mitigate postpartum depression (PPD)-like symptoms in the rat model and regulate the AA/NF-κB pathway to suppress the inflammatory response in the prefrontal lobes of PPD rats. METHODS: Five groups of Sprague Dawley rats were used: normal, sham operated, PPD model, AUDA, and paroxetine hydrochloride. During the 21-day treatment period, animals in all groups underwent assessments (open field test, forced swimming test, and sucrose consumption) for depression-like behavior. At the conclusion of the treatment period, animals in all study groups were euthanized and various proteins in the prefrontal lobes were measured. RESULTS: Depression-like behavior in rats was attenuated by AUDA. In the prefrontal lobes of PPD rats, levels of 5-LOX, COX-2, sEH, IL-1ß, IL- 6, p65, p-p65, P-IκBα, NF-κB p65, and GFAP were increased while levels of epoxyeicosatrienoic acids and 5-HT were decreased. AUDA reversed these changes, thus having a similar effect as the classic antidepressant paroxetine hydrochloride. CONCLUSION: AUDA may constrain AA/NF-κB in the prefrontal cortex of PPD rats, thus inhibiting the inflammatory response and ultimately attenuating postpartum depression-like behavior.


Subject(s)
Depression, Postpartum , NF-kappa B , Animals , Female , Rats , Arachidonic Acids , Depression, Postpartum/drug therapy , Paroxetine/pharmacology , Paroxetine/therapeutic use , Rats, Sprague-Dawley
8.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2274-2284, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37681392

ABSTRACT

Sulfonamides (SAs) are the first broad-spectrum synthetic antimicrobial agents used in human health and veterinary medicine. The majority of SAs entering human body is discharged into aquatic environment in the form of parent material or metabolites. The residues of SAs and their metabolites in the aquatic environment and the development of drug resistance can be serious threats to ecosystems and human health. We summarized recent advances in the research of SAs. The main metabolite types of SAs and the distribution characteristics of metabolites in different aquatic environments were introduced. The ecotoxicology of SAs metabolites, especially the distribution and hazards of sulfonamide resistance genes (sul-ARGs), were discussed with emphasis. Finally, the future research works were proposed. This paper could provide basic information for further research on SAs.


Subject(s)
Ecosystem , Ecotoxicology , Humans , Sulfanilamide , Sulfonamides/toxicity
9.
Ying Yong Sheng Tai Xue Bao ; 34(6): 1680-1692, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37694431

ABSTRACT

Synthetic fluoroquinolones (FQs) are the third most commonly used antibiotics in the world and play an extremely important role in antibacterial drugs. The excessive use and discharge will alter ecological environment, with consequence on human health and global sustainable development. It is therefore of great significance for scientific use and management of FQs to systematically understand their biogeochemical behavior and eco-environmental effects. After drug administration in humans and animals, only a small part of FQs are transformed in vivo. The main transformation processes include formylation, acetylation, oxidation and cleavage of piperazine ring, defluorination and decarboxylation of aromatic core ring, etc. About 70% of the original drug and a small amount of transformed products would be migrated to the environment through excretion. After entering the environment, FQs and their transformation products mainly exist in environmental media such as water, soil and sediment, and undergo migration and transformation processes such as adsorption, photolysis and biodegradation. Adsorption facilitates transfer of FQs from medium to another. The photolysis mainly affects the C7-amine substituents of FQs, whereas the core structure of FQs remains intact. Biodegradation mainly refers to the degradation of FQs by microorganisms and microalgae, including piperazine modification of the piperazine ring such as acetylation and formylation, partial or complete ring cleavage, core structure decarboxylation, defluorination and conjugation formation. The migration and transformation processes of FQs cannot completely eliminate them from the environment. Instead, they would become "pseudo-persistent" pollutants, which seriously affect the behavior, growth and reproduction of algae, crustaceans and fish, change biogeochemical cycle, destroy aquatic environment, and stimulate microbial resistance and the generation of resistance genes. In the future, more in-depth studies should be conducted on the environmental behavior of FQs and their impacts on ecological environment, the risk assessment of microbial resistance and resistance genes of FQs, and the mechanism and effect of micro-biodegradation of FQs.


Subject(s)
Climate , Fluoroquinolones , Animals , Humans , Anti-Bacterial Agents , Biodegradation, Environmental , Piperazines
10.
Water Res ; 244: 120508, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37633211

ABSTRACT

Algal blooms can aggravate arsenic (As) release from sediments and thus pose a pollution risk in the marine environment. However, the driving mechanism of algal blooms on sedimentary As cycling remains unclear. This study undertakes the first comprehensive examination of As release mechanisms under algal bloom conditions based on the evidence provided by temporal and depth profile changes of As species in the overlying water column, porewater and sediment, as well as As-related functional genes over the course of a 30-day incubation experiment using algal addition. The higher rate of increase of dissolved total As (dTAs) concentrations in a high biomass algal group (HAG) than an experimental control group (CG) suggested that algal degradation promoted the release of sedimentary As. The solid phase in all experimental groups remained rich in As(V), while in porewater As(III) and As(V) were the dominant As species during the initial rapid and subsequent slow degradation phases of organic matter, respectively, indicating that microbial reduction of As(V) and Fe(III) controlled the release of As during these two periods. A pronounced increase in arrA gene copies, and not a corresponding increase in the Geobacter copies, in HAG relative to CG supported the notion that algal blooms promoted microbial As(V) reduction. Additionally, the lower concentration of dissolved As(III) and cumulative dTAs flux in the sterilized-HAG treatment than in the sterilized-CG one further suggested that geochemically-mediated processes were not the main pathways of As release. Finally, it is estimated that summer algal blooms in the Changjiang Estuary can cause the release of 1440 kg of sedimentary As into the overlying water.


Subject(s)
Arsenic , Water Pollutants, Chemical , Arsenic/analysis , Ferric Compounds , Geologic Sediments , Water Pollutants, Chemical/analysis , Eutrophication , Seawater , Water , China
11.
Front Hum Neurosci ; 17: 1197459, 2023.
Article in English | MEDLINE | ID: mdl-37576472

ABSTRACT

Cognitive function represents a complex neurophysiological capacity of the human brain, encompassing a higher level of neural processing and integration. It is widely acknowledged that the cerebrum plays a commanding role in the regulation of cognitive functions. However, the specific role of the cerebellum in cognitive processes has become a subject of considerable scholarly intrigue. In 1998, Schmahmann first proposed the concept of "cognitive affective syndrome (CCAS)," linking cerebellar damage to cognitive and emotional impairments. Since then, a substantial body of literature has emerged, exploring the role of the cerebellum in cognitive neurological function. The cerebellum's adjacency to the cerebral cortex, brainstem, and spinal cord suggests that the cerebral-cerebellar network loops play a crucial role in the cerebellum's participation in cognitive neurological functions. In this review, we comprehensively examine the recent literature on the involvement of the cerebellum in cognitive functions from three perspectives: the cytological basis of the cerebellum and its anatomical functions, the cerebellum and cognitive functions, and Crossed cerebellar diaschisis. Our aim is to shed light on the role and mechanisms of the cerebellum in cognitive neurobrain networks.

12.
Sci Total Environ ; 867: 161589, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36640885

ABSTRACT

Carbon dioxide (CO2) emitted by human activities not only brings about a serious greenhouse effect but also accelerates global climate change. This has resulted in extreme climate hazards that can obstruct human development in the near future. Hence, there is an urgent need to achieve carbon neutrality by increasing negative emissions. The ocean plays a vital role in absorbing and sequestering CO2. Current research on marine carbon storage and sink enhancement mainly focuses on biological carbon sequestration using carbon sinks (macroalgae, shellfish, and fisheries). However, seawater inorganic carbon accounts for more than 95 % of the total carbon in marine carbon storage. Increasing total alkalinity at a constant dissolved inorganic carbon shifts the balance of existing seawater carbonate system and prompts a greater absorption of atmospheric CO2, thereby increasing the ocean's "carbon sink". This review explores two main mechanisms (i.e., enhanced weathering and ocean alkalinization) and materials (e.g., silicate rocks, metal oxides, and metal hydroxides) that regulate marine chemical carbon sink (MCCS). This work also compares MCCS with other terrestrial and marine carbon sinks and discusses the implementation of MCCS, including the following aspects: chemical reaction rate, cost, and possible ecological and environmental impacts.

13.
Sci Total Environ ; 862: 160728, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36496016

ABSTRACT

The development of marine carbon sequestration project has an important potential for carbon neutralization in the short-term (several decades). Marine carbon sequestration technology is based on biological and carbonate pumps to increase particulate organic carbon and authigenic insoluble carbonates to the deep sea or seafloor, aiming to achieve permanent carbon sequestration. Particularly, chemical carbon sequestration technology based on carbonate pump is proposed and considered to achieve short-term marine carbon sequestration in recent years. This technology mainly includes alkaline mineral addition and combining CO32- to insoluble carbonates to improve marine carbon fixation capacity. Potential marine ecosystem risks of chemical CO2 removal method should be considered before being a feasible technology. We reviewed the potential effects of marine chemical carbon sequestration project on marine organisms. Marine chemical carbon sequestration had two main effects on marine organisms: released chemicals effect, and particle effect. Released chemicals in mineral weathering directly affected phytoplankton and bacteria community. Particles formed during carbon sequestration process mainly affected filter feeding organisms. The toxic effects of particles on aquatic organisms increased with decreasing sizes and increasing concentrations of particle. Algae and crustaceans were the most sensitive groups exposed to metal nanoparticles (nm-µm) in seawaters, thus could be used as target species to evaluate ecological risk of small particles generated in chemical carbon sequestration project. Embryos or larva of filter feeding organisms were more sensitive to large clay and metal microparticles (µm­mm) than adults, thus could be used as sensitive groups to establish safety concentration of large particles. The relatively inert metal nanoparticles and microparticles had higher safety concentrations than active ones. These particle concentration thresholds could be as a reference to design concentrations and initial sizes of applied minerals in marine chemical carbon sequestration project. This will ensure that the ecological risk is minimized when carbon fixation efficiency is maximized.


Subject(s)
Carbon Dioxide , Ecosystem , Carbonates , Minerals , Carbon , Carbon Sequestration
14.
Sci Total Environ ; 854: 158805, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36113798

ABSTRACT

Organic matter is a critical factor which regulates nitrogen loss pathways of denitrification and anammox for microbes in marine ecosystems. However, only a little attention has been paid to contrasting studies on denitrification and anammox in sandy and muddy sediments, especially in the coastal continental shelf dominated by sandy sediments. This study determined the bulk properties and associated microbial nitrogen transformation processes of surface sediments in the East China Sea coastal shelf, with the aim of gaining insight into the interaction of nitrogen loss with organic matter at the molecular level. The results illustrate that nitrogen loss dominates in organic-rich muddy sediments, and its denitrification rate (14.39 nmol N g-1 h-1) and anammox rate (2.73 nmol N g-1 h-1) are greater than those of sandy sediments (denitrification rate = 5.55 nmol N g-1 h-1, anammox rate = 1.57 nmol N g-1 h-1). Furthermore, determination of the mean summed ladderanes shows higher anammox generated in the muddy sediments with a value of 167.78 ng g-1dw. Quantitative analysis demonstrated that organic-rich muddy sediments enhanced the copy number of the denitrifying functional gene nosZ and anammox functional gene hzsB. We inferred that the greater rate of nitrogen loss in muddy sediments was due to the coupling relationship between anammox and denitrification. Overall, the community distribution and abundance of denitrifying bacteria and anammox bacteria changed intricately under the influence of organic matter. Moreover, this study further improves the understanding of nitrogen loss pathways and mechanistic factors from sediments.


Subject(s)
Denitrification , Geologic Sediments , Geologic Sediments/microbiology , Ecosystem , Nitrogen/metabolism , Oxidation-Reduction
15.
BMC Cardiovasc Disord ; 22(1): 248, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35655131

ABSTRACT

BACKGROUND: Cellular and animal studies have shown that endoplasmic reticulum protein B (Nogo-B) is associated with hypertension, but that association has not been fully studied in humans. Therefore, the expression levels of Nogo-B were investigated in hypertensive patients. METHODS: The plasma Nogo-B levels of 74 patients with hypertension and 67 non-hypertensive patients were measured by enzyme-linked immunosorbent assay. RESULTS: The plasma Nogo-B levels in the hypertensive group [523.43(411.41-746.79)] were higher than in the non-hypertensive group [380.29(281.57-462.13)] (P < 0.01). Pearson's correlation analysis indicated that systolic blood pressure and diastolic blood pressure were linearly and positively correlated with plasma Nogo-B levels. Multivariable logistic regression analysis was performed based on sex, age, BMI, smoking history, drinking history, and levels of TC, TG, LDL, and HDL. The results indicated that the plasma Nogo-B levels were independently associated with hypertension (OR = 1.007, 95%CI: 1.004-1.010, P < 0.01). CONCLUSIONS: The present study suggests that hypertensive participants exhibited higher plasma Nogo-B levels than those without hypertension. Plasma Nogo-B levels are independently associated with hypertension.


Subject(s)
Hypertension , Animals , Asian People , China/epidemiology , Humans , Hypertension/diagnosis , Plasma , Smoking
16.
Signal Transduct Target Ther ; 6(1): 329, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34471087

ABSTRACT

It's a challenge for detecting the therapeutic targets of a polypharmacological drug from variations in the responsed networks in the differentiated populations with complex diseases, as stable coronary heart disease. Here, in an adaptive, 31-center, randomized, double-blind trial involving 920 patients with moderate symptomatic stable angina treated by 14-day Danhong injection(DHI), a kind of polypharmacological drug with high quality control, or placebo (0.9% saline), with 76-day following-up, we firstly confirmed that DHI could increase the proportion of patients with clinically significant changes on angina-frequency assessed by Seattle Angina Questionnaire (ΔSAQ-AF ≥ 20) (12.78% at Day 30, 95% confidence interval [CI] 5.86-19.71%, P = 0.0003, 13.82% at Day 60, 95% CI 6.82-20.82%, P = 0.0001 and 8.95% at Day 90, 95% CI 2.06-15.85%, P = 0.01). We also found that there were no significant differences in new-onset major vascular events (P = 0.8502) and serious adverse events (P = 0.9105) between DHI and placebo. After performing the RNA sequencing in 62 selected patients, we developed a systemic modular approach to identify differentially expressed modules (DEMs) of DHI with the Zsummary value less than 0 compared with the control group, calculated by weighted gene co-expression network analysis (WGCNA), and sketched out the basic framework on a modular map with 25 functional modules targeted by DHI. Furthermore, the effective therapeutic module (ETM), defined as the highest correlation value with the phenotype alteration (ΔSAQ-AF, the change in SAQ-AF at Day 30 from baseline) calculated by WGCNA, was identified in the population with the best effect (ΔSAQ-AF ≥ 40), which is related to anticoagulation and regulation of cholesterol metabolism. We assessed the modular flexibility of this ETM using the global topological D value based on Euclidean distance, which is correlated with phenotype alteration (r2: 0.8204, P = 0.019) by linear regression. Our study identified the anti-angina therapeutic module in the effective population treated by the multi-target drug. Modular methods facilitate the discovery of network pharmacological mechanisms and the advancement of precision medicine. (ClinicalTrials.gov identifier: NCT01681316).


Subject(s)
Angina, Stable/drug therapy , Cardiovascular Agents/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Adolescent , Adult , Aged , Angina, Stable/genetics , Angina, Stable/pathology , Double-Blind Method , Female , Gene Expression Regulation/drug effects , Humans , Injections , Male , Middle Aged , Treatment Outcome , Young Adult
17.
Environ Pollut ; 284: 117454, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34062435

ABSTRACT

Levels of toxic elements in ambient PM2.5 were measured from 29 October 2019 to 30 March 2020 in Linfen, China, to assess the health risks they posed and to identify critical risk sources during different periods of the COVID-19 lockdown and haze episodes using positive matrix factorization (PMF) and a health-risk assessment model. The mean PM2.5 concentration during the study period was 145 µg/m3, and the 10 investigated toxic elements accounted for 0.31% of the PM2.5 mass. The total non-cancer risk (HI) and total cancer risk (TCR) of the selected toxic elements exceed the US EPA limits for children and adults. The HI for children was 2.3 times that for adults for all periods, which is likely due to the high inhalation rate per unit body weight for children. While the TCR for adults was 1.7 times that of children, which is mainly attributed to potential longer exposure duration for adults. The HI and TCR of the toxic elements during full lockdown were reduced by 66% and 58%, respectively, compared to their pre-lockdown levels. The HI and TCR were primarily attributable to Mn and As, respectively. Health risks during haze episodes were significantly higher than the average levels during COVID-19 lockdowns, though the HI and TCR of the selected toxic elements during full-lockdown haze episodes were 68% and 17% lower, respectively, than were the levels during pre-lockdown haze episodes. During the study period, fugitive dust and steel-related smelting were the highest contributors to HI and TCR, respectively, and decreased in these emission sources contributed the most to the lower health risks observed during the full lockdown. There, the control of these sources is critical to effectively reduce public health risks.


Subject(s)
Air Pollutants , COVID-19 , Adult , Air Pollutants/analysis , Child , China , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2 , Vehicle Emissions/analysis
18.
Huan Jing Ke Xue ; 42(3): 1343-1353, 2021 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-33742931

ABSTRACT

Bacteriohopanepolyols (BHPs), as a novel bacterial biomarker, show clear potential for tracking organic matter sources and environmental change. To evaluate BHPs as indicators of seasonal hypoxia in the Yangtze Estuary and its adjacent areas, the composition, distribution, and source of BHPs in surface sediments were analyzed using high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS). A total of 12 BHPs were detected with a normalized TOC concentration of 3.79-269 µg·g-1. The BHPs present in the surface sediments were dominated by bacteriohopanetetrol (BHT), 2-methyl-BHT, amino-BHPs, and adenosylhopane and its homologues, accounting for 40%, 22%, 12%, and 4% of the total BHPs, respectively. Each of these components and their corresponding indices show clear spatial trends. Specifically, BHT showed an "offshore increase" trend, which was mainly attributed to marine autochthonous inputs; and soil marker BHPs including adenosylhopane, which were dominated by terrestrial sources, showed an "offshore decrease" trend. The Rsoil index indicated a similar spatial pattern to the soil marker BHPs, with the relative contribution of terrestrial organic matter decreasing from 61.5% in coastal waters to 1.66% in the open ocean. This suggests that the organic matter in the coastal waters was mainly derived from terrestrial sources while marine sources were dominant in the open ocean. BHT-Ⅱ, the BHT stereoisomer, was derived from anaerobic ammonium oxidizing bacteria. High BHT-Ⅱ ratios were consistent with seasonal hypoxic zones in the Yangtze Estuary and, furthermore, these ratios were significantly negatively correlated with dissolved oxygen (DO) concentrations in the bottom waters. These observations indicate that hypoxic environments are beneficial to BHT-Ⅱ production, implying that BHT-Ⅱ can be used as an indicator of marine hypoxia.


Subject(s)
Estuaries , Water Pollutants, Chemical , Bacteria , China , Environmental Monitoring , Geologic Sediments , Humans , Hypoxia , Rivers , Water Pollutants, Chemical/analysis
19.
Adv Ther ; 38(5): 2302-2314, 2021 05.
Article in English | MEDLINE | ID: mdl-33740217

ABSTRACT

INTRODUCTION: This study was designed to understand the baseline salt intake of adult patients with hypertension in Shanxi Province, and to analyze the correlation between urinary sodium excretion and blood pressure. METHODS: From June 2018 to December 2019, 16 hospitals with regional representativeness and experimental conditions in Shanxi Province were selected, and 643 eligible adult inpatients with primary hypertension were enrolled from these hospitals. The ages of patients ranged from 18 to 80 years. A 24-h ambulatory blood pressure monitoring was performed, and morning urine sodium concentration and 24-h urine sodium excretion were measured. The correlation between urinary sodium excretion and blood pressure in adult patients with hypertension was analyzed. RESULTS: The baseline salt intake of the adult patient participants with hypertension in Shanxi Province was 11.51 g/day. The average 24-h urinary sodium excretion of all observed subjects was 191.90 ± 98.18 mmol. The 24-h urinary sodium excretion and morning urinary sodium concentration were significantly positively correlated with systolic and diastolic blood pressure following adjustment of confounding factors, including gender, age, body weight, and smoking. CONCLUSION: The morning urine sodium concentration and 24-h urine sodium excretion were significantly positively correlated with blood pressure. High sodium excretion may be a risk factor for rhythm abnormalities in non-dipper pattern blood pressure. The control of urinary sodium concentration can thus be an important strategy for regulating abnormal blood pressure rhythm.


Subject(s)
Hypertension , Sodium , Adolescent , Adult , Aged , Aged, 80 and over , Blood Pressure , Blood Pressure Monitoring, Ambulatory , Humans , Middle Aged , Risk Factors , Young Adult
20.
Mar Pollut Bull ; 165: 112109, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33581572

ABSTRACT

Bulk organic matter proxies including total organic carbon (TOC), total nitrogen (TN), C/N ratio and carbon stable isotopic composition (δ13C) combined with sterols in a sediment core were studied to reconstruct both organic matter (OM) sources and phytoplankton evolutions of the Jiaozhou Bay (JZB) during the past ~ 80 years. The OM source allocations were calculated based on δ13C and sterol. The results showed that the marine OM (MOM) input was the dominant OM sources, with the marine organic carbon (OCM) proportion of 54.2-78.4% and marine sterol proportion of 63.9-72.7%. The Terrestrial OM (TOM) contribution increased especially since the 1960s, mainly attributed to the increased sewage discharge and usage of fertilizer. Elevated marine primary productivity since the 1980s was mainly attributed to the increased nutrient inputs. Evolution of diatom compared with dinoflagellate in the JZB was closely related to the anthropogenic forcing and climate change.


Subject(s)
Geologic Sediments , Water Pollutants, Chemical , Bays , Carbon/analysis , Carbon Isotopes/analysis , China , Environmental Monitoring , Phytoplankton , Sterols/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...