Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 213: 108826, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908351

ABSTRACT

Rice production is threatened by heavy metal stress. The use of multi-walled carbon nanotubes (MWCNTs) in agriculture has been reported in previous studies. We aimed to quantify the impact of MWCNTs on the growth and physiological characteristics of scented rice under cadmium (Cd) and lead (Pb) stresses. Therefore, a pot experiment was conducted, two scented rice varieties Yuxiangyouzhan and Xiangyaxiangzhan were used as materials grown under different concentrations of MWCNTs (0, 100, and 300 mg kg-1 recorded as CK, CNPs100, and CNPs300, respectively). The yield, antioxidant response, and rhizosphere microbial community of scented rice were studied. The results showed that compared with the CK treatment, the CNPs100 and CNPs300 treatments increased leaf dry weight by 17.95%-56.22% at the heading stage, and the H2O2 content in leaves decreased significantly by 36.64%-42.27% at the maturity stage. Under CNPs100 treatment, the grain yield of two scented rice varieties increased significantly by 17.54% and 27.40%, respectively. The MWCNTs regulated the distribution of the Cd and Pb in different plant tissues. The content of Cd (0.11-0.20 mg kg-1) and Pb (0.01-0.04 mg kg-1) in grain were at a safety level (<0.2 mg kg-1). Moreover, MWCNTs increased soil microbial community abundance and altered community composition structure under Cd-Pb stress, which in turn improved agronomic traits and quality of scented rice. Overall, this study suggested that the application of MWCNTs regulates the growth, yield, physiological response, and soil microbial community, the genotypes response effect of scented rice to MWCNTs is needed further studied.


Subject(s)
Antioxidants , Cadmium , Lead , Nanotubes, Carbon , Oryza , Rhizosphere , Oryza/microbiology , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Cadmium/toxicity , Cadmium/metabolism , Lead/metabolism , Lead/toxicity , Antioxidants/metabolism , Microbiota/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Soil Microbiology , Stress, Physiological/drug effects
2.
Ultrason Sonochem ; 104: 106821, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387222

ABSTRACT

Ultrasonic seed (US) treatment could alter seed germination mechanism, however, US induced alterations in morph-physiological attributes and yield of fragrant rice were rarely reported. In the present study, the seeds of three fragrant rice cultivars viz., Xiangyaxiangzhan, Meixiangzhan 2, Ruanhuayou 6100 and one non-fragrant rice viz., Wufengyou 615 were exposed to ultrasonic waves at 20-40 kHz for 1.5 min (T) whereas the seeds without exposure were taken as control (CK). Results showed that US treatment caused minor cracks on seed surface while improved seed germination rate (1.79 %-11.09 %) and 3-indoleacetic acid (IAA) (3.36 %-46.91 %). Furthermore, peroxidase (POD) activity and methionine sulfoxide reductase activity was increased by 29.15 %-74.13 % and 11.26 %-20.87 %, respectively; however, methionine sulfoxide reductase related protein repairing gene MSRA4 was down-regulated by 17.93 % -41.04 % under T, compared to CK. Besides, US treatment also improved soluble protein in flag leaf (0.92 %-40.79 %), photosynthesis (3.37 %-16.46 %), biomass (5.17 %-31.87 %), as well as 2-acetyl-1-pyrroline content (4.77 %-15.48 %) in rice grains. In addition, multivariate analysis showed that the dry weight at the maturity stage were significantly related to the POD, glutathione reductase (GR) activity, IAA, and abscisic acid (ABA) content while germination rate was positively related to the GR activity, ABA content, and yield, but which were negatively related to the IAA and gibberellic acid content.


Subject(s)
Oryza , Seeds , Seeds/metabolism , Oryza/metabolism , Germination , Methionine Sulfoxide Reductases/metabolism , Ultrasonics , Antioxidants/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism
3.
J Hazard Mater ; 465: 133118, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38101017

ABSTRACT

Cadmium (Cd) contamination in agricultural soil is a global concern for soil health and food sustainability because it can cause Cd accumulation in cereal grains. An in-situ stabilizing technology (using organic amendments) has been widely used for Cd remediation in arable lands. Therefore, the current study examined the influence of vermicompost (VC) on soil biochemical traits, bacterial community diversity and composition, Cd uptake and accumulation in rice plants and grain yield in a Cd-contaminated soil during the late growing season in 2022. Different doses of VC (i.e., V1 = 0 t ha-1, V2 = 3 t ha-1 and V3 = 6 t ha-1) and two concentrations of Cd (i.e., Cd1 = 0 and Cd2 = 50 mg Cd Kg-1 were used. We performed high-throughput sequencing of 16S ribosomal RNA gene amplicons to characterize soil bacterial communities. The addition of VC considerably affected the diversity and composition of the soil bacterial community; and increased the relative abundance of phyla Chloroflexi, Proteobacteria, Acidobacteriota, Plantomycetota, Gemmatimonadota, Patescibacteria and Firmicute. In addition, VC application, particularly High VC treatment, exhibited the highest bacterial diversity and richness (i.e., Simpson, Shannon, ACE, and Chao 1 indexes) of all treatments. Similarly, the VC application increased the soil chemical traits, including soil pH, soil organic carbon (SOC), available nitrogen (AN), total nitrogen (TN), total potassium (TK), total phosphorous (TP) and enzyme activities (i.e., acid phosphatase, catalase, urease and invertase) compared to non-VC treated soil under Cd stress. The average increase in SOC, TN, AN, TK and TP were 5.75%, 41.15%, 18.51%, 12.31%, 25.45% and 29.67%, respectively, in the High VC treatment (Pos-Cd + VC3) compared with Cd stressed soil. Redundancy analysis revealed that the leading bacterial phyla were associated with SOC, AN, TN, TP and pH, although the relative abundance of Firmicutes, Proteobacteria, Bacteroidata, and Acidobacteria on a phylum basis and Actinobacteria, Gammaproteobacteria and Myxococcia on a class basis, were highly correlated with soil environmental factors. Moreover, the VC application counteracted the adverse effects of Cd on plants and significantly reduced the Cd uptake and accumulation in rice organs, such as roots, stem + leaves and grain under Cd stress conditions. Similarly, applying VC significantly increased the fragrant rice grain yield and yield traits under Cd toxicity. The correlation analysis showed that the increased soil quantities traits were crucial in obtaining high rice grain yield. Generally, the findings of this research demonstrate that the application of VC in paddy fields could be useful for growers in Southern China by sustainably enhancing soil functionality and crop production.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Soil/chemistry , Oryza/chemistry , Carbon/analysis , Bacteria , Acidobacteria , Proteobacteria , Edible Grain/chemistry , Phosphorus/analysis , Nitrogen/analysis , China , Soil Pollutants/analysis
4.
Metabolites ; 13(6)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37367921

ABSTRACT

Cadmium (Cd) is a potentially hazardous element with significant biological toxicity, negatively affecting plant growth and physio-biochemical metabolism. Thus, it is necessary to examine practical and eco-friendly approaches to reduce Cd toxicity. Titanium dioxide nanoparticles (TiO2-NPs) are growth regulators that help in nutrient uptake and improve plant defense systems against abiotic and biological stress. A pot experiment was performed in the late rice-growing season (July-November) 2022 to explore the role of TiO2-NPs in relieving Cd toxicity on leaf physiological activity, biochemical attributes, and plant antioxidant defense systems of two different fragrant rice cultivars, i.e., Xiangyaxiangzhan (XGZ) and Meixiangzhan-2 (MXZ-2). Both cultivars were cultivated under normal and Cd-stress conditions. Different doses of TiO2-NPs with and without Cd-stress conditions were studied. The treatment combinations were: Cd-, 0 mg/kg CdCl2·2.5 H2O; Cd+, 50 mg/kg CdCl2·2.5 H2O; Cd + NP1, 50 mg/kg Cd + 50 TiO2-NPs mg/L; Cd + NP2, 50 mg/kg Cd + 100 TiO2-NPs mg/L; Cd + NP3, 50 mg/kg Cd + 200 TiO2-NPs mg/L; Cd + NP4, 50 mg/kg Cd + 400 TiO2-NPs mg/L. Our results showed that the Cd stress significantly (p < 0.05) decreased leaf photosynthetic efficiency, stomatal traits, antioxidant enzyme activities, and the expression of their encoding genes and protein content. Moreover, Cd toxicity destabilized plant metabolism owing to greater accretion of hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels at vegetative and reproductive stages. However, TiO2-NPs application improved leaf photosynthetic efficacy, stomatal traits, and protein and antioxidant enzyme activities under Cd toxicity. Application of TiO2-NPs decreased the uptake and accumulation of Cd in plants and levels of H2O2 and MDA, thereby helping to relieve Cd-induced peroxidation damage of leaf membrane lipids by enhancing the activities of different enzymes like ascorbate peroxidase (APX), catalase (CAT), peroxidase (POS), and superoxide dismutase (SOD). Average increases in SOD, APX, CAT, and POS activities of 120.5 and 110.4%, 116.2 and 123.4%, 41.4 and 43.8%, and 36.6 and 34.2% in MXZ-2 and XGZ, respectively, were noted in Cd + NP3 treatment across the growth stages as compared with Cd-stressed plants without NPs. Moreover, the correlation analysis revealed that the leaf net photosynthetic rate is strongly associated with leaf proline and soluble protein content, suggesting that a higher net photosynthetic rate results in higher leaf proline and soluble protein content. Of the treatments, the Cd + NP3 (50 mg/kg Cd + 200 mg/L TiO2-NPs) performed the best for both fragrant rice cultivars under Cd toxicity. Our results showed that TiO2-NPs strengthened rice metabolism through an enhanced antioxidant defense system across the growth stages, thereby improving plant physiological activity and biochemical characteristics under Cd toxicity.

5.
Sci Total Environ ; 892: 164348, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37236452

ABSTRACT

Soil microbial necromass is considered a persistent component of soil organic carbon (SOC), constituting the final product of the microbial carbon pump (MCP). However, the mechanisms involved in the effects of tillage and rice residue managements on the vertical distribution of microbial necromass and plant residues in rice paddy soils remain unclear, limiting knowledge of SOC sequestration mechanisms. Therefore, we estimated microbial- and plant-derived C by biomarker amino sugars (AS) and lignin phenols (VSC) at the 0-30 cm soil depth, as well as their relationships with SOC contents and mineralization in a rice paddy soil under contrasting tillage practices, namely no-tillage (NT), reduced tillage (RT), and conventional tillage (CT). The results showed that the SOC contents in the rice paddy soil were positively correlated with soil AS and VSC contents. The NT resulted in significantly higher (P < 0.05) AS (expressed as per kilogram soil) at the 0-10 cm and 10-30 cm soil depths by 45-48 % than RT and CT. However, microbial-derived C contents and SOC mineralization were not significantly changed by NT. In contrast, the plant-derived C contents in the total SOC decreased significantly under the NT scenario, suggesting the consumption of plant-derived C even with more rice residue inputs (at the 0-10 cm soil depth). In summary, 5-year short-term NT management with more rice residue mulch on the soil surface in rice paddy maintained a low plant-derived C content (at a sampling date before rice transplanting), suggesting a different mode of C sequestration, except for the protection of plant-derived C under anaerobic conditions.


Subject(s)
Oryza , Soil , Soil/chemistry , Agriculture/methods , Oryza/chemistry , Carbon , Lignin
6.
BMC Plant Biol ; 23(1): 88, 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36765297

ABSTRACT

BACKGROUND: In plants, cytokinin is activated into trans-zeatin to fight abiotic stresses. However, the mechanism of the effect of trans-zeatin on 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice has yet to be studied. The present study was conducted to explore the effects of exogenous trans-zeatin on enzymes activities, genes expression, and precursors involved in 2-AP biosynthesis and 2-AP contents as well as the seedling quality of a fragrant rice cultivar viz., Meixiangzhan2. Four concentrations of trans-zeatin solutions at 20, 40, and 80 µmol L- 1 (ZT1, ZT2, and ZT3) were sprayed onto rice seedlings. RESULTS: Compared to the control, trans-zeatin treatments showed significantly higher 2-AP contents of fragrant rice seedlings. Increased plant height and stem width were observed due to trans-zeatin treatments. The trans-zeatin application increased 1-pyrroline, methylglyoxal, proline, and P5C contents, enhanced P5CS and OAT activities, and reduced glutamic acid contents. In addition, expressions of ProDH, P5CS2, and DAO4 were comparatively higher under trans-zeatin treatments than CK in fragrant rice seedlings. CONCLUSIONS: Overall, up-regulation of P5C, 1-pyrroline, and proline and down-regulation of glutamic acid under appropriate trans-zeatin concentrations (20 and 40 µmol L- 1) resulted in enhanced 2-AP biosynthesis in fragrant rice seedlings and 20-40 µmol L- 1 was considered as the suggested concentrations of trans-zeatin application in fragrant rice seedling.


Subject(s)
Oryza , Oryza/metabolism , Seedlings/metabolism , Zeatin , Glutamic Acid/metabolism , Proline/metabolism
7.
BMC Plant Biol ; 22(1): 376, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35906561

ABSTRACT

BACKGROUND: Procyanidins is a polyphenolic compound with multiple properties. However, the application of exogenous procyanidins in crops has not been reported. Aromatic rice is a high-quality rice with a special aroma and popular with consumers. The 2-acetyl-1-pyrroline (2-AP) is a key compound of aromatic rice aroma. In the current study, aromatic rice plants were sprayed with procyanidins solutions at 0.25 (Pr0.25), 0.50 (Pr0.50), 1.00 (Pr1.00), 2.00 (Pr2.00) g L-1, respectively and treatment sprayed with distilled water was taken as control (CK). The effects of exogenous procyanidins on growth and 2-AP biosynthesis of aromatic rice plants were explored. RESULTS: Compared with CK, Pr1.00 and Pr2.00 treatments significantly increased 2-AP content by 16.67% and 37.68%, respectively. Higher proline, 1-pyrroline-5-carboxylic acid (P5C), 1-pyrroline, methylglyoxal contents, and lower γ- aminobutyric acid (GABA) content were recorded in Pr1.00 and Pr2.00 treatments than CK. Compared with CK, Pr1.00 and Pr2.00 treatments significantly improved the activities of P5CS and OAT and diminished the activity of BADH. Furthermore, compared with CK, Pr1.00 and Pr2.00 treatments significantly up-regulated the transcript levels of P5CS2, P5CR, OAT, DAO4 and down-regulated the transcript levels of BADH2. Exogenous procyanidins had no substantial effects on plant height, stem diameter, fresh weight, and dry weight of aromatic rice plants. CONCLUSIONS: In conclusion, our findings reported the increment of 2-AP content in aromatic rice under exogenous procyanidins. Our results indicated that the application of exogenous procyanidins enhanced 2-AP biosynthesis by improving proline biosynthesis and inhibiting GABA formation.


Subject(s)
Oryza , Proanthocyanidins , Odorants/analysis , Oryza/genetics , Proline , Pyrroles , gamma-Aminobutyric Acid
8.
Antioxidants (Basel) ; 11(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35453461

ABSTRACT

This study aimed to determine the mechanism of exogenous melatonin application in alleviating the combined Pb and Cd (Pb-Cd) toxicity on aromatic rice (Oryza sativa L.). In this study, a pot experiment was conducted; two aromatic rice varieties, Yuxiangyouzhan and Xiangyaxiangzhan, were selected, and sprays using 50, 100, 200, and 400 µmol L-1 melatonin (denoted as S50, S100, S200, and S400) and irrigation using 100, 300, and 500 µmol L-1 melatonin (denoted as R100, R300, and R500) were also selected. The results showed that, under the S50, S100, and S200 treatments, the Pb content of aromatic rice grain decreased, and the grain yield increased significantly. Moreover, the application of exogenous melatonin significantly reduced the accumulation of H2O2 in rice leaves at maturity under Cd-Pb stress and reduced the MDA content in Xiangyaxiangzhan leaves. In addition, the microbial community structure changed significantly under S50 and R300 treatments. Some pathways, such as the synthesis of various amino acids and alanine, aspartate, and glutamate metabolism, were regulated by S50 treatment. Overall, melatonin application improved aromatic rice grain yield while reducing heavy metal accumulation by regulating the antioxidant capacity and metabolites in aromatic rice plants and altering the physicochemical properties and microbial community structures of the soil.

9.
Front Plant Sci ; 12: 772728, 2021.
Article in English | MEDLINE | ID: mdl-34899799

ABSTRACT

2-acetyl-1-pyrroline (2-AP) is the key compound of rice aroma. However, the responses of 2-AP biosynthesis in fragrant rice under different soil moisture and the corresponding mechanism are little known. The present study evaluated the effects of different soil moisture on 2-AP biosynthesis through a pot experiment. Four soil moisture contents, that is, 50% (SM50), 40% (SM40), 30% (SM30), and 20% (SM20), were adopted, and SM50 treatment was taken as control. The pots were weighed and watered to maintain the corresponding soil moisture content. The results showed no significant difference in growth parameters (plant height, stem diameter, and plant dry weight) among all treatments. Compared with SM50, SM40, SM30, and SM20 treatments significantly (p<0.05) increased 2-AP content by 32.81, 23.18, and 53.12%, respectively. Between 20 to 90% higher proline content was observed in SM40, SM30, and SM20 treatments than in SM50. Enzymes including proline dehydrogenase, ornithine transaminase, and 1-pyrroline-5-carboxylate synthetase exhibited lower activities with soil moisture declined. Higher diamine oxidase activity was observed in SM40, SM30, and SM20 treatments compared with SM50, and real-time PCR analyses showed that transcript level of DAO1 was greatly increased under low soil moisture treatments, especially in SM20 treatment. Transcript levels of PRODH, DAO2, DAO4, DAO5, OAT, P5CS1, and P5CS2 decreased or maintained in SM40, SM30, and SM20 treatments compared with SM50. We deduced that low soil moisture content enhanced 2-AP biosynthesis mainly by upregulating the expression of DAO1 to promote the conversion from putrescine to 2-AP.

10.
Ecotoxicol Environ Saf ; 211: 111911, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33453638

ABSTRACT

Cadmium (Cd) toxicity causes severe perturbations in nitrogen (N) uptake and assimilation, and thereby interrupts normal plant growth. Molybdenum (Mo), a necessary trace element, plays important roles in N metabolism through regulating N assimilatory enzymes activities and expressions in higher plants. Taking this into account, a pot experiment was performed to explore the role of Mo in alleviating Cd-induced inhibitory effects on physio-biochemical processes, N metabolism, yield attributes and grain quality characters of two fragrant rice cultivars; Guixiangzhan and Meixiangzhan-2. Both the fragrant rice cultivars were treated with two levels of each Cd concentrations (0 and 100 mg/kg) and Mo treatments (0 and 0.15 mg/kg). The results revealed that Cd toxicity significantly reduced (p < 0.05) plant dry biomass, gaseous exchange attributes, chlorophyll contents, N utilizing and assimilatory enzymes activities, 2-acetyl-1-pyrroline (2AP) contents and grain yield in both cultivars; however, more severe inhibitions were observed in Meixiangzhan-2 than Guixiangzhan. Nevertheless, Mo application alleviated Cd stress and enhanced 2AP content and grain yield by 75.05% and 67.94% in Guixiangzhan and 87.71% and 83.51% in Meixiangzhan-2, respectively compared with no Mo application. Moreover, Mo application improved photosynthesis, chloroplast configuration, soluble protein and proline contents and also strengthened the N assimilatory pathway through efficient NO3- utilization, higher nitrate reductase, nitrite reductase, glutamine synthetase and glutamate synthase activities and transcript levels under Cd stress. Collectively, our results imply that Mo-induced enhancement in N utilization and assimilation improved yield and grain quality characters of fragrant rice cultivars under Cd stress.


Subject(s)
Cadmium/toxicity , Molybdenum/metabolism , Nitrogen/metabolism , Oryza/physiology , Pyrroles/metabolism , Cadmium/metabolism , Edible Grain/chemistry , Molybdenum/analysis , Nitrate Reductase/metabolism , Nitrogen/analysis , Odorants , Oryza/metabolism , Perfume/analysis , Photosynthesis , Plant Proteins/metabolism , Proline/metabolism
11.
Physiol Mol Biol Plants ; 27(12): 2849-2858, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35035140

ABSTRACT

Drought stress substantially influences the growth and development of many crops. The present study was conducted to investigate the effects of exogenous selenium on the growth, photosynthesis and antioxidant response of fragrant rice seedlings under drought stress. In a pot experiment, fragrant rice seedlings were subjected to drought stress (soil water potential was controlled at - 0.025 ± 5 MPa) and foliar application of selenium (Se) at 0, 10, 30, and 50 µmol L-1. Rice seedlings not exposed to drought stress and Se were used as control. Exposure of fragrant rice seedlings to drought stress resulted in significant (P < 0.05) decrease in fresh weight, dry weight, plant height and stem diameter relative to the control. Total chlorophyll, chlorophyll a, chlorophyll b and carotenoid were 20.54-27.24%, 20.82-26.83%, 19.45-29.07% and 21.49-29.17% lower with drought stress treatment compared to CK. Drought stress also significantly (P < 0.05) decreased net photosynthetic rate and soluble protein content. However, Se treatments (30 and 50 µmol L-1) substantially improved fresh weight and dry weight of fragrant rice seedlings under drought stress. Net photosynthetic rate, activities of antioxidant enzymes (GPX, SOD and CAT) and soluble protein content in rice seedlings under drought stress improved due to Se treatment. Higher transcript levels of antioxidant-related genes (GPX1, GPX4, CATA and CATC) were also observed with Se treatment.

12.
Biomolecules ; 10(11)2020 11 21.
Article in English | MEDLINE | ID: mdl-33233373

ABSTRACT

Increasing evidence shows that cadmium (Cd) toxicity causes severe perturbations on growth performance, physio-biochemical and molecular processes in crop plants. Molybdenum (Mo), an essential trace element, plays key roles in oxidative stress tolerance of higher plants. Hence, the present study has been conducted to investigate the possible role of Mo in alleviating Cd-induced inhibitions in two fragrant rice cultivars namely Guixiangzhan (GXZ) and Meixiangzhan-2 (MXZ-2). The results revealed that Mo application enhanced the plant dry biomass by 73.24% in GXZ and 58.09% in MXZ-2 under Cd stress conditions, suggesting that Mo supplementation alleviated Cd-induced toxicity effects in fragrant rice. The enhanced Cd-tolerance in fragrant rice plants prompted by Mo application could be ascribed to its ability to regulate Cd uptake and reduce Cd-induced oxidative stress as evident by lower hydrogen peroxide levels, electrolyte leakage and malondialdehyde contents in Cd-stressed plants. The ameliorative role of Mo against Cd-toxicity also reflected through its protection to the photosynthetic pigments, proline and soluble protein. Mo also induced antioxidant defense systems via maintaining higher contents of glutathione and ascorbate as well as enhancing the ROS-detoxifying enzymes such as catalase, peroxidase, superoxide dismutase and ascorbate peroxidase activities and up-regulating transcript abundance in both fragrant rice cultivars under Cd stress. Conclusively, Mo-mediated modulation of Cd toxicity in fragrant rice was through restricting Cd uptake, maintaining photosynthetic performance and alleviating oxidative damages via the strong anti-oxidative defense systems; however, GXZ cultivar is comparatively more Cd tolerant and Mo-efficient as evident from the less growth inhibition and biomass reduction as well as enhanced Mo-induced Cd stress tolerance and less oxidative damage than MXZ-2 fragrant rice cultivar.


Subject(s)
Antioxidants/pharmacology , Cadmium/toxicity , Molybdenum/pharmacology , Oryza/drug effects , Oxidative Stress/drug effects , Trace Elements/pharmacology , Gene Expression , Oryza/genetics , Oryza/metabolism , Oxidative Stress/physiology
13.
Sci Rep ; 10(1): 14830, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908195

ABSTRACT

The effect of light and water on aromatic rice remain largely unclear. A pot experiment was conducted to investigate the influences of light-water treatments (CK: natural light and well-watered conditions, WS: natural light and water-stressed conditions, LL: low light and well-watered conditions, LL-WS: low light and water-stressed treatment) on yield and 2-acetyl-1-pyrroline (2AP) formation in aromatic rice. Compared with CK, the light-water treatments decreased grain yield (10.32-39.19%) due to reductions in the filled grain percentage and total dry weight, in the regulation of biomass distribution, and in the attributes of gas exchange and antioxidant response parameters. The 2AP content in grains increased in the LL treatment (5.08-16.32%) but decreased in the WS treatment compared with that in CK. The changes in 2AP were associated with changes in 2AP formation-related traits and element content. Low light and water stress led to yield declines in aromatic rice, but low light alleviated the decrease in 2AP content caused by water stress.


Subject(s)
Light , Odorants/analysis , Oryza/growth & development , Pyrroles/metabolism , Water/metabolism , Dehydration , Edible Grain/growth & development , Edible Grain/radiation effects , Oryza/radiation effects
14.
Rice (N Y) ; 12(1): 77, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31673808

ABSTRACT

It was highlighted that the original article (Mo et al. 2019) contained an error in Fig. 1f which revealed the biosynthesis pathway of 2AP. This Correction article shows the correct Fig. 1 and incorrect Fig. 1. The original article has been updated.

15.
Food Sci Nutr ; 7(11): 3784-3796, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31763028

ABSTRACT

The 2-acetyl-1-pyrroline (2AP) is a key aroma compound in fragrant rice. The present study assessed the γ-aminobutyric acid (GABA) and nitrogen (N) application induced regulations in the biochemical basis of rice aroma formation. Four N levels, that is, 0, 0.87, 1.75, and 2.61 g/pot, and two GABA treatments, that is, 0 mg/L (GABA0) and 250 mg/L (GABA250), were applied to three fragrant rice cultivars, that is, Yuxiangyouzhan, Yungengyou 14, and Basmati-385. Results showed that GABA250 increased 2AP, Na, Mn, Zn, and Fe contents by 8.44%, 10.95%, 25.70%, 11.14%, and 43.30%, respectively, under N treatments across cultivars. The GABA250 further enhanced the activities of proline dehydrogenase (PDH), ornithine aminotransferase (OAT) (both at 15 days after heading (d AH), and diamine oxidase (DAO) (at maturity) by 20.36%, 11.24%, and 17.71%, respectively. Significant interaction between GABA and N for Mn, Zn, and Fe contents in grains, proline content in leaves, GABA content in leaves at 15 d AH and maturity stage (MS), Δ1-pyrroline-5-carboxylic acid (P5C) contents in leaves at 15 d AH, and Δ1-pyrroline-5-carboxylate synthase (P5CS), PDH, and OAT activities in leaves at MS was noted. Moreover, the 2AP contents in grains at MS showed a significant and positive correlation with the proline contents in the leaves at 15d AH. In conclusion, GABA250 enhanced the 2AP, Na, Mn, Zn, and Fe contents, as well as the enzyme activities involved in 2AP biosynthesis. Exogenous GABA and N application improved the 2AP contents and nutrient uptake in fragrant rice.

16.
Rice (N Y) ; 12(1): 74, 2019 Oct 03.
Article in English | MEDLINE | ID: mdl-31583492

ABSTRACT

BACKGROUND: Water (W) and nitrogen (N) management generally cause regulations in the 2-acetyl-1-pyrroline (2AP) accumulation in fragrant rice; nevertheless, the feasibility of such management strategies at booting stage in improving 2AP accumulation has not been examined in details. METHODS: Field experiments were conducted in the early season (March-July) and repeated in the late season (July-November) in 2013. The treatments were applied urea (90 kg ha- 1), calcium super phosphate (90 kg ha- 1) and potassium chloride (195 kg ha- 1) as basal fertilizer, and urea (65 kg ha- 1) at tillering stage. Three N levels i.e., 0 kg N ha- 1 (N1), 30 kg N ha- 1 (N2), and 60 kg N ha- 1 (N3) and three water levels i.e., W1 treatment (well-watered treatment with water layer of 2-4 cm), W2 treatment (soil water potential was - 15 ± 5 kPa), and W3 treatment (soil water potential was - 25 ± 5 kPa) at booting stage was set up for three rice varieties i.e., Nongxiang 18, Yungengyou 14 and Basmati. The grain yield, head milled rice yield, 2AP contents and the biochemical parameters related to 2AP formation were investigated. RESULTS: Result indicated that W and N dynamics regulated the grain yield, head milled rice yield, and 2AP contents in brown rice across three varieties. The N2 and N3 treatment significantly increased the 2AP contents in brown rice by 9.54% and 11.95%, and 8.88% and 32.54% in the early and the late season, respectively; improved grain yield and head milled rice yield. The W3 treatment improved grain yield, head milled rice yield and 2AP content. Significant W and N interaction effect on 2AP content in brown rice was detected, where the W3 N3 treatment showed the strongest interaction regarding improvement of 2AP contents in brown rice. The 2AP accumulation and its related biochemical parameters and their relationships in different plant tissues at different growth stages under W and N treatments had also been assessed. The 2AP content, P5C content and DAO activity during grain filling periods was highly related to the 2AP content in brown rice. CONCLUSION: This study revealed that the 60 kg N ha- 1 coupled with - 25 ± 5 kPa treatment showed the best positive effects on yield and aroma in fragrant rice, suggested that water and nitrogen management at booting stage can improve grain yield and fragrance in fragrant rice. However, further study to evaluate the metabolic and molecular basis of 2AP accumulation in fragrant rice is needed.

17.
Ecotoxicol Environ Saf ; 185: 109659, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31541946

ABSTRACT

Cadmium (Cd) affects crop growth and productivity by disrupting normal plant metabolism. To determinate whether ultrasonic (US) seed treatment can alleviate Cd stress in rape (Brassica napus L.), the seeds of two oilseed rape cultivars i.e., 'Youyanzao18' and 'Zaoshu104' were exposed to ultrasonic waves for 1 min at 20 KHz frequency. Seeds without US treatment were taken as control (CK). Results revealed that the germination rate of both cultivars was significantly (P < 0.05) higher in US treatment than CK only at 0 and 10 mg Cd L-1. The shoot and root length of both cultivars were significantly higher in US treatment than CK at all Cd treatments except the root length of Youyanzao18 at 50 mg Cd L-1. The fresh weight Youyanzao18 was significantly (P < 0.05) higher in US than CK except for Youyanzao18 at 25 mg Cd L-1. Moreover, the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) activities and the proline, glutathione (GSH), and soluble protein contents in Youyanzao18 were relatively higher in the US treatment than CK. The malondialdehyde (MDA) contents were prominently reduced in US treatment than CK. The pods per plant, seeds per pod and rapeseed yield were increased by 15.9, 11.4, and 16.4% in Youyanzao18 and 10.3, 9.5, and 11.5% in Zaoshu104, respectively in US treatment, compared to CK. Moreover, the contents of Cd in root, stem, leaf, rape pod shell, and rapeseeds were comparatively less in US treatment than CK whereas the Cd concentrations in different plant parts of both rape cultivars were recorded as: leaf ˃ root ˃ stem ˃ rape pod shell ˃ rapeseed. In sum, the US treatment improved the morphological growth and rapeseed yield whereas reduced the Cd accumulation in different plant parts of rapeseed under Cd contaminated soil.


Subject(s)
Antioxidants/metabolism , Brassica napus/drug effects , Cadmium/toxicity , Oxidative Stress/drug effects , Seeds/drug effects , Soil Pollutants/toxicity , Ultrasonic Waves , Brassica napus/growth & development , Brassica napus/metabolism , Germination/drug effects , Oxidation-Reduction , Seeds/growth & development , Seeds/metabolism
18.
Sci Rep ; 9(1): 10618, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31337786

ABSTRACT

Temperature is one of the critical factors affecting rice growth and yield production. This study investigated the effects of rhizosphere temperature at the tillering stage on the growth, physiological parameters and gas exchange attributes of two rice cultivars, i.e., the super rice cultivar Yuxiangyouzhan and the non-super rice cultivar Xiangyaxiangzhan, under hydroponic conditions. Three rhizosphere temperature treatments, i.e., a low-rhizosphere-temperature treatment (LT, nutrient solution at 17.5 ± 1.5 °C), an ambient-temperature treatment (AT, nutrient solution at 27.5 ± 1.5 °C), and a high-rhizosphere-temperature treatment (HT, nutrient solution at 37.5 ± 1.5 °C), were applied in this study. The results showed significant differences in most of the rice growth and physiological and gas exchange parameters as a result of cultivar and rhizosphere temperature as well as their interaction. In addition, the marked reduction in total dry weight was positively correlated with a notable reduction in plant morphological parameters, such as the fresh and dry weight of the leaves and stem sheaths, and changes in gas exchange parameters. Moreover, antioxidant reactions were active in response to high and low rhizosphere temperatures, which varied in different plant tissues. These results suggested that the super and non-super rice were sensitive to high and low rhizosphere temperatures, respectively.


Subject(s)
Oryza/growth & development , Plant Transpiration , Rhizosphere , Catalase/metabolism , Crop Production , Oryza/metabolism , Oryza/physiology , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Roots/growth & development , Plant Shoots/growth & development , Plant Transpiration/physiology , Superoxide Dismutase/metabolism , Temperature
19.
Sci Rep ; 9(1): 4311, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867535

ABSTRACT

The aim of this study was to determine the effects of sodium selenate (15, 30, 45, 60, 75, 90, and 105 mg kg-1) on the germination and seedling growth of Changnongjing 1 rice (Oryza sativa L.) at 25 °C and 30 °C. Low selenate concentrations induced shorter and more uniform germination periods than did ultrapure water at both temperatures. Seedlings primed with low selenate concentrations were superior to those primed with ultrapure water in terms of plant height, fresh weight, dry matter accumulation, and soluble carbohydrate and protein contents. Lower selenate concentrations (15-75 mg kg-1) induced higher chlorophyll and phenol contents in seedlings than did ultrapure water. Lower selenate concentrations also increased the superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and glutathione peroxidase (GPx) contents in seedlings and significantly decreased the stress-related malondialdehyde (MDA) content compared to ultrapure water. In conclusion, rice seedling germination and growth were promoted by priming with low selenate concentrations (15-75 mg kg-1) but inhibited by priming with high selenate concentrations (90-105 mg kg-1).


Subject(s)
Germination/drug effects , Oryza/drug effects , Seedlings/growth & development , Selenic Acid/pharmacology , Chlorophyll/metabolism , Dose-Response Relationship, Drug , Oryza/growth & development , Oxidoreductases/drug effects , Oxidoreductases/metabolism , Phenols/metabolism , Seedlings/drug effects
20.
Plant Physiol Biochem ; 135: 272-276, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30592999

ABSTRACT

Rice (Oryza sativa L.) is a staple food for the majority of the world's population. Rice fragrance, aroma, or scent is not just a cooking quality, but also an eating quality of rice. Rice fragrance is a trait that is widely desired among rice consumers. Consequently, rice producers are sorting for rice cultivars with strong fragrance. High demand for fragrant rice cultivars has prompted rice breeders and researchers to investigate the genetics and the ways to improve fragrance in rice. It has been established by many researches that fgr gene on the chromosome 8 of rice controls its fragrance. As with other plants, rice contains BADH but because rice does not accumulate GB, a catalyst for BADH coding, BADH1 on chromosome 4 of rice and BADH2 on chromosome 8 of rice have been widely reported to be responsible for encoding BADH. badh2, a recessive allele of BADH2 has been confirmed to be responsible for fragrance in rice. badh2 and its alleles have been associated with the accumulation and synthesis of 2AP. Proline, ornithine, glutamate, methylglyoxal, Δ1-pyrroline-5-carboxylate synthetase and glyceraldehyde-3-phosphate dehydrogenase have all been identified as the precursors for the synthesis and accumulation of 2AP. By reviewing and summarising the main results of various researchers, we have been able to elucidate how various genes and metabolites influence 2AP accumulation in fragrant rice. It is our hope that this paper will be beneficial to researchers, who are working on the improvement of rice fragrance.


Subject(s)
Oryza/genetics , Pyrroles/metabolism , Genes, Plant , Odorants , Oryza/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...