Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(11)2023 May 25.
Article in English | MEDLINE | ID: mdl-37299630

ABSTRACT

Electrocatalytic water splitting, as a sustainable, pollution-free and convenient method of hydrogen production, has attracted the attention of researchers. However, due to the high reaction barrier and slow four-electron transfer process, it is necessary to develop and design efficient electrocatalysts to promote electron transfer and improve reaction kinetics. Tungsten oxide-based nanomaterials have received extensive attention due to their great potential in energy-related and environmental catalysis. To maximize the catalytic efficiency of catalysts in practical applications, it is essential to further understand the structure-property relationship of tungsten oxide-based nanomaterials by controlling the surface/interface structure. In this review, recent methods to enhance the catalytic activities of tungsten oxide-based nanomaterials are reviewed, which are classified into four strategies: morphology regulation, phase control, defect engineering, and heterostructure construction. The structure-property relationship of tungsten oxide-based nanomaterials affected by various strategies is discussed with examples. Finally, the development prospects and challenges in tungsten oxide-based nanomaterials are discussed in the conclusion. We believe that this review provides guidance for researchers to develop more promising electrocatalysts for water splitting.

2.
Nanomaterials (Basel) ; 10(4)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230724

ABSTRACT

Transition metal sulfides have attracted a lot of attention as potential oxygen evolution reaction (OER) catalysts. Bimetallic sulfide possesses superior physicochemical properties due to the synergistic effect between bimetallic cations. By introducing a metal-semiconductor interface, the physicochemical properties of transition metal sulfide can be further improved. Using the solvothermal method, Au@NiCo2S4 core-shell heterostructure nanoparticles (NPs) and bare NiCo2S4 NPs were prepared. The measurement of the OER catalytic performance showed that the catalytic activity of Au@NiCo2S4 core-shell heterostructure was enhanced compared to bare NiCo2S4 NPs. At the current density of 10 mA cm-2, the overpotential of Au@NiCo2S4 (299 mV) is lower than that of bare NiCo2S4 (312 mV). The Tafel slope of Au@NiCo2S4 (44.5 mV dec-1) was reduced compared to that of bare NiCo2S4 (49.1 mV dec-1), indicating its faster reaction kinetics. Detailed analysis of its electronic structure, chemical state, and electrochemical impedance indicates that the enhanced OER catalytic performances of bare Au@NiCo2S4 core-shell NPs were a result of its increased proportion of high-valance Ni/Co cations, and its increased electronic conductivity. This work provides a feasible method to improve OER catalytic performance by constructing a metal-semiconductor core-shell heterostructure.

3.
Nat Commun ; 10(1): 3824, 2019 Aug 23.
Article in English | MEDLINE | ID: mdl-31444352

ABSTRACT

The interfacial sites of supported metal catalysts are often critical in determining their performance. Single-atom catalysts (SACs), with every atom contacted to the support, can maximize the number of interfacial sites. However, it is still an open question whether the single-atom sites possess similar catalytic properties to those of the interfacial sites of nanocatalysts. Herein, we report an active-site dependent catalytic performance on supported gold single atoms and nanoparticles (NPs), where CO oxidation on the single-atom sites is dramatically promoted by the presence of H2O whereas on NPs' interfacial sites the promoting effect is much weaker. The remarkable H2O promoting effect makes the Au SAC two orders of magnitude more active than the commercial three-way catalyst. Theoretical studies reveal that the dramatic promoting effect of water on SACs originates from their unique local atomic structure and electronic properties that facilitate an efficient reaction channel of CO + OH.

4.
RSC Adv ; 9(70): 40811-40818, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-35540052

ABSTRACT

Core/shell nanoparticles (NPs) of Au@Co2P, each comprising a Au core with a Co2P shell, were prepared, and shown to efficiently catalyze the oxygen evolution reaction (OER). In particular, Au@Co2P has a small overpotential of 321 mV at 10 mA cm-2 in 1 M KOH aqueous solution at room temperature, which is about 95 mV less than pure Co2P. More importantly, the Tafel slope of Au@Co2P, at 57 mV dec-1, is 44 mV dec-1 lower than that of Co2P. Hence, Au@Co2P outperforms Co2P drastically in practical production when a high current density is required.

5.
Nanomaterials (Basel) ; 8(11)2018 Nov 17.
Article in English | MEDLINE | ID: mdl-30453623

ABSTRACT

Platinum-based nanomaterials have attracted much interest for their promising potentials in fields of energy-related and environmental catalysis. Designing and controlling the surface/interface structure of platinum-based nanomaterials at the atomic scale and understanding the structure-property relationship have great significance for optimizing the performances in practical catalytic applications. In this review, the strategies to obtain platinum-based catalysts with fantastic activity and great stability by composition regulation, shape control, three-dimension structure construction, and anchoring onto supports, are presented in detail. Moreover, the structure-property relationship of platinum-based nanomaterials are also exhibited, and a brief outlook are given on the challenges and possible solutions in future development of platinum-based nanomaterials towards catalytic reactions.

6.
Nanotechnology ; 29(20): 204002, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29473830

ABSTRACT

Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 °C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...