Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome ; 58(11): 463-77, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26599708

ABSTRACT

The SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box gene family contains highly conserved plant-specific transcription factors that play an important role in plant development, especially in flowering. Chinese cabbage (Brassica rapa subsp. pekinensis) is a leafy vegetable grown worldwide and is used as a model crop for research in genome duplication. The present study aimed to characterize the SBP-box transcription factor genes in Chinese cabbage. Twenty-nine SBP-box genes were identified in the Chinese cabbage genome and classified into six groups. We identified 23 orthologous and 5 co-orthologous SBP-box gene pairs between Chinese cabbage and Arabidopsis. An interaction network among these genes was constructed. Sixteen SBP-box genes were expressed more abundantly in flowers than in other tissues, suggesting their involvement in flowering. We show that the MiR156/157 family members may regulate the coding regions or 3'-UTR regions of Chinese cabbage SBP-box genes. As SBP-box genes were found to potentially participate in some plant development pathways, quantitative real-time PCR analysis was performed and showed that Chinese cabbage SBP-box genes were also sensitive to the exogenous hormones methyl jasmonic acid and salicylic acid. The SBP-box genes have undergone gene duplication and loss, evolving a more refined regulation for diverse stimulation in plant tissues. Our comprehensive genome-wide analysis provides insights into the SBP-box gene family of Chinese cabbage.


Subject(s)
Brassica/genetics , Multigene Family , Arabidopsis/genetics , Chromosome Mapping , Evolution, Molecular , Gene Duplication , Gene Expression Profiling , Genes, Plant , Genome, Plant , Genome-Wide Association Study , Phylogeny , Real-Time Polymerase Chain Reaction , Transcription Factors , Transcriptome
2.
Mol Genet Genomics ; 289(1): 77-91, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24241166

ABSTRACT

Basic helix-loop-helix (bHLH) transcription factors are widely distributed in eukaryotic organisms and are thought to be one of the largest families of regulatory proteins. This important family of transcriptional regulators plays crucial roles in plant development. However, a systematic analysis of the bHLH transcription factor family has not been reported in Chinese cabbage. In this study, 230 bHLH transcription factors were identified from the whole Chinese cabbage genome and compared with proteins from other representative plants, fungi and metazoans. The Chinese cabbage bHLH (BrabHLH) gene family could be classified into 24 subfamilies. Phylogenetic analysis of BrabHLHs along with bHLHs from Arabidopsis and rice indicated 26 subfamilies. The identification, classification, phylogenetic reconstruction, conserved motifs, chromosome distribution, functional annotation, expression patterns and interaction networks of BrabHLHs were analyzed. Distribution mapping showed that BrabHLHs were non-randomly located on the ten Chinese cabbage chromosomes. One hundred and twenty-four orthologous bHLH genes were identified between Chinese cabbage and Arabidopsis, and the interaction networks of the orthologous genes were constructed in Chinese cabbage. Quantitative RT-PCR analysis showed that expressions of BrabHLH genes varied widely under different abiotic stress treatments for different times. Thus, this comprehensive analysis of BrabHLHs represents a rich resource, aiding the elucidation of the roles of bHLH family members in plant growth and development. Furthermore, the comparative genomics analysis deepened our understanding of the evolution of this gene family after a polyploidy event.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Brassica/genetics , Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Asian People , Brassica/classification , Chromosome Mapping , Evolution, Molecular , Gene Regulatory Networks , Humans , Phylogeny , RNA, Messenger/genetics , RNA, Plant/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
3.
Genomics ; 103(1): 135-46, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24365788

ABSTRACT

The GRAS gene family is one of the most important families of transcriptional regulators. In this study, 48 GRAS genes are identified from Chinese cabbage, and they are classified into eight groups according to the classification of Arabidopsis. The characterization, classification, gene structure and phylogenetic construction of GRAS proteins are performed. Distribution mapping shows that GRAS proteins are nonrandomly localized in 10 chromosomes. Fifty-five orthologous gene pairs are shared by Chinese cabbage and Arabidopsis, and interaction networks of these orthologous genes are constructed. The expansion of GRAS genes in Chinese cabbage results from genome triplication. Among the 17 species examined, 14 higher plants carry the GRAS genes, whereas two lower plants and one fungi species do not. Furthermore, the expression patterns of GRAS genes exhibit differences in three tissues based on RNA-seq data. Taken together, this comprehensive analysis will provide rich resources for studying GRAS protein functions in Chinese cabbage.


Subject(s)
Arabidopsis/genetics , Brassica/genetics , Genes, Plant , Multigene Family , Genetic Association Studies , Phylogeny , Plant Proteins/genetics , RNA, Plant/genetics , Sequence Analysis, RNA , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...