Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 260(Pt 2): 129582, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246469

ABSTRACT

Parvalbumin (PV) is a major allergen in fish, and traditional treatments cannot reduce its sensitization. The effects of dense-phase carbon dioxide (DPCD) treatment on the sensitization and spatial structure of PV in Trachinotus ovatus were evaluated in this study. Western blotting and indirect ELISA were used to determine the allergenicity changes and spatial conformations of PV treated by DPCD. Tris-tricine-SDS-PAGE, circular dichroism, surface hydrophobicity, endogenous fluorescence, UV spectrophotometry, free amino group, total sulfhydryl group and SEM analyses were applied to characterize PV structure. The results showed that DPCD treatment (15 MPa, 30 min, 50 °C) could reduce PV-induced allergic reactions by 39-41 %, which destroyed the normal conformational epitopes and reduced the risk of PV-induced allergy. The secondary structure changed from ordered to disordered with a decreased content of α-helical groups, while the internal hydrophobic groups were exposed. The total sulfhydryl group content decreased significantly (P < 0.05). The surface hydrophobicity and ultraviolet absorption spectrum were enhanced, and the endogenous fluorescence peak shifted to a long wavelength. Meanwhile, the content of free amino groups increased significantly (P < 0.05). This study could provide a theoretical basis and a promising technical approach for reduction of PV allergenicities.


Subject(s)
Hypersensitivity , Parvalbumins , Animals , Parvalbumins/chemistry , Carbon Dioxide/chemistry , Allergens/chemistry , Fishes , Protein Structure, Secondary
2.
Food Res Int ; 174(Pt 1): 113623, 2023 12.
Article in English | MEDLINE | ID: mdl-37986476

ABSTRACT

The impact of treatment pressure, temperature and time of DPCD on the Pacific White Shrimp (Litopenaeus vannamei) surimi gel properties was studied and compared with the conventional heat treatment. The gel strength, crosslinking degree, and microstructure of shrimp surimi gels were investigated. Quantitative microstructural characteristics were investigated to elucidate the changes in microstructure during the formation of gel induced by DPCD. With increased DPCD treatment setting conditions, the gel strength and crosslinking degree of shrimp surimi gel significantly improved (P < 0.05) with similar variation trends. Quantitative microstructural analysis revealed that the fractal dimension (Df) and the pore equivalent diameter of gel microstructure increased with the increase of DPCD treatment conditions. The lacunarity decreased and then increased, whereas pore number increased and decreased. According to the microstructural characteristics results, the surimi gel with 51.48 % degree of crosslinking induced at 25 MPa, 50˚C, and 60 min showed the most complex and homogeneous microstructure with the highest (Df), smaller lacunarity, an average pore equivalent diameter, and a larger pore number. The correlation analysis demonstrated that the crosslinking degree was strongly positively correlated with the gel strength. The Df, pore equivalent diameter and number of pores significantly positively correlated with the crosslinking degree, whereas the lacunarity strongly negatively correlated with the crosslinking degree. The present study showed that the DPCD treatment with a crosslinking degree of 51.48 % is the most optimum condition for better gel formation. The study could provide a theoretical basis for processing shrimp surimi with improved gel properties.


Subject(s)
Carbon Dioxide , Seafood , Carbon Dioxide/chemistry , Seafood/analysis , Hot Temperature , Temperature , Gels/chemistry
3.
Foods ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36900608

ABSTRACT

The relationship between the gel quality of golden pompano surimi treated with dense phase carbon dioxide (DPCD) and changes in water characteristics was evaluated. Low-field nuclear magnetic resonance (LF-NMR) and nuclear magnetic resonance imaging were used to monitor changes in the water status of surimi gel under different treatment conditions. Whiteness, water-holding capacity and gel strength were used as the quality indicators of the surimi gel. The results showed that DPCD treatment could significantly increase the whiteness of surimi and the strength of the gel, while the water-holding capacity decreased significantly. LF-NMR analysis showed that, as the DPCD treatment intensity increased, the relaxation component T22 shifted to the right, T23 shifted to the left, the proportion of A22 decreased significantly (p < 0.05) and the proportion of A23 increased significantly (p < 0.05). A correlation analysis of water characteristics and gel strength showed that the water-holding capacity of surimi induced by DPCD was strongly positively correlated with gel strength, while A22 and T23 were strongly negatively correlated with gel strength. This study provides helpful insights into the quality control of DPCD in surimi processing and also provides an approach for the quality evaluation and detection of surimi products.

4.
Front Immunol ; 11: 595700, 2020.
Article in English | MEDLINE | ID: mdl-33240285

ABSTRACT

Recently, the immuno-enhancing potential of polysaccharide from Auricularia auricula (AAP) has been an area of research interest. However, the immune-stimulatory activity and mechanisms of AAP in immunosuppressive mice treated with cyclophosphamide (CTX) are still poorly understood. This study aimed to evaluate the immuno-enhancing effects of AAP and mine its possible mechanisms. Firstly, polysaccharides were isolated from A. auricula and purified. Secondly, the immune-stimulatory activities of the first AAP fraction (AAP1) were evaluated in the CTX-treated mice. Results showed that AAP1 significantly enhanced immune organ indexes, remarkably stimulated IFN-γ, IL-2, IL-4, IL-10, and TNF-α levels in the serum, and dramatically up-regulated the mRNA levels of Claudin-1, Occludin and ZO-1. Compared to the CTX group, AAP1 administration restored the gut microbiota composition similar to that of the control group by decreasing the ratio of Firmicutes/Bacteroidetes and increasing the relative abundances of short-chain fatty acid-producing microbiota. This study provides useful information for its further application as an immune-stimulator in foods and drugs.


Subject(s)
Adjuvants, Immunologic/pharmacology , Auricularia , Fungal Polysaccharides/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Cecum/chemistry , Cyclophosphamide , Cytokines/blood , Fatty Acids, Volatile/analysis , Immunosuppressive Agents , Male , Mice, Inbred BALB C
SELECTION OF CITATIONS
SEARCH DETAIL
...