Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 436(2): 168373, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37992890

ABSTRACT

The G-quadruplex (G4) is a distinct geometric and electrophysical structure compared to classical double-stranded DNA, and its stability can impede essential cellular processes such as replication, transcription, and translation. This study focuses on the BsPif1 helicase, revealing its ability to bind independently to both single-stranded DNA (ssDNA) and G4 structures. The unfolding activity of BsPif1 on G4 relies on the presence of a single tail chain, and the covalent continuity between the single tail chain and the G4's main chain is necessary for efficient G4 unwinding. This suggests that ATP hydrolysis-driven ssDNA translocation exerts a pull force on G4 unwinding. Molecular dynamics simulations identified a specific region within BsPif1 that contains five crucial amino acid sites responsible for G4 binding and unwinding. A "molecular wire stripper" model is proposed to explain BsPif1's mechanism of G4 unwinding. These findings provide a new theoretical foundation for further exploration of the G4 development mechanism in Pif1 family helicases.


Subject(s)
Adenosine Triphosphate , DNA Helicases , DNA, Single-Stranded , G-Quadruplexes , Adenosine Triphosphate/chemistry , DNA, Single-Stranded/chemistry , Hydrolysis , Molecular Dynamics Simulation , DNA Helicases/chemistry
2.
Nucleic Acids Res ; 44(17): 8385-94, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27471032

ABSTRACT

Alternative DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by G-rich sequences that are widely distributed throughout the human genome. We have previously shown that Pif1p not only unfolds G4, but also unwinds the downstream duplex DNA in a G4-stimulated manner. In the present study, we further characterized the G4-stimulated duplex DNA unwinding phenomenon by means of single-molecule fluorescence resonance energy transfer. It was found that Pif1p did not unwind the partial duplex DNA immediately after unfolding the upstream G4 structure, but rather, it would dwell at the ss/dsDNA junction with a 'waiting time'. Further studies revealed that the waiting time was in fact related to a protein dimerization process that was sensitive to ssDNA sequence and would become rapid if the sequence is G-rich. Furthermore, we identified that the G-rich sequence, as the G4 structure, equally stimulates duplex DNA unwinding. The present work sheds new light on the molecular mechanism by which G4-unwinding helicase Pif1p resolves physiological G4/duplex DNA structures in cells.


Subject(s)
Biocatalysis , DNA Helicases/metabolism , DNA, Single-Stranded/metabolism , DNA/metabolism , G-Quadruplexes , Nucleic Acid Denaturation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Base Sequence , DNA Replication , Protein Multimerization , Substrate Specificity , Time Factors
3.
Nucleic Acids Res ; 44(6): 2949-61, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26809678

ABSTRACT

Pif1 helicases are ubiquitous members of the SF1B family and are essential for maintaining genome stability. It was speculated that Pif1-specific motifs may fold in specific structures, conferring distinct activities upon it. Here, we report the crystal structures of the Pif1 helicase from Bacteroides spp with and without adenosine triphosphate (ATP) analog/ssDNA. BsPif1 shares structural similarities with RecD2 and Dda helicases but has specific features in the 1B and 2B domains. The highly conserved Pif1 family specific sequence motif interacts with and constraints a putative pin-loop in domain 1B in a precise conformation. More importantly, we found that the 2B domain which contains a specific extended hairpin undergoes a significant rotation and/or movement upon ATP and DNA binding, which is absolutely required for DNA unwinding. We therefore propose a mechanism for DNA unwinding in which the 2B domain plays a predominant role. The fact that the conformational change regulates Pif1 activity may provide insight into the puzzling observation that Pif1 becomes highly processive during break-induced replication in association with Polδ, while the isolated Pif1 has low processivity.


Subject(s)
Adenosine Triphosphate/chemistry , Bacterial Proteins/chemistry , Bacteroides/chemistry , DNA Helicases/chemistry , DNA, Single-Stranded/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Motifs , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides/enzymology , Binding Sites , Conserved Sequence , Crystallography, X-Ray , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Polymerase III/chemistry , DNA Polymerase III/genetics , DNA Polymerase III/metabolism , DNA, Single-Stranded/metabolism , Gene Expression , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
4.
Nucleic Acids Res ; 43(18): 8942-54, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26384418

ABSTRACT

ScPif1 DNA helicase is the prototypical member of a 5'-to-3' helicase superfamily conserved from bacteria to human and plays various roles in the maintenance of genomic homeostasis. While many studies have been performed with eukaryotic Pif1 helicases, including yeast and human Pif1 proteins, the potential functions and biochemical properties of prokaryotic Pif1 helicases remain largely unknown. Here, we report the expression, purification and biochemical analysis of Pif1 helicase from Bacteroides sp. 3_1_23 (BsPif1). BsPif1 binds to a large panel of DNA substrates and, in particular, efficiently unwinds partial duplex DNAs with 5'-overhang, fork-like substrates, D-loop and flap-like substrates, suggesting that BsPif1 may act at stalled DNA replication forks and enhance Okazaki fragment maturation. Like its eukaryotic homologues, BsPif1 resolves R-loop structures and unwinds DNA-RNA hybrids. Furthermore, BsPif1 efficiently unfolds G-quadruplexes and disrupts nucleoprotein complexes. Altogether, these results highlight that prokaryotic Pif1 helicases may resolve common issues that arise during DNA transactions. Interestingly, we found that BsPif1 is different from yeast Pif1, but resembles more human Pif1 with regard to substrate specificity, helicase activity and mode of action. These findings are discussed in the context of the possible functions of prokaryotic Pif1 helicases in vivo.


Subject(s)
Bacterial Proteins/metabolism , Bacteroides/enzymology , DNA Helicases/metabolism , DNA/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/isolation & purification , DNA/chemistry , DNA Helicases/chemistry , DNA Helicases/isolation & purification , G-Quadruplexes , Substrate Specificity
5.
J Biol Chem ; 290(12): 7722-35, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25627683

ABSTRACT

The evolutionarily conserved G-quadruplexes (G4s) are faithfully inherited and serve a variety of cellular functions such as telomere maintenance, gene regulation, DNA replication initiation, and epigenetic regulation. Different from the Watson-Crick base-pairing found in duplex DNA, G4s are formed via Hoogsteen base pairing and are very stable and compact DNA structures. Failure of untangling them in the cell impedes DNA-based transactions and leads to genome instability. Cells have evolved highly specific helicases to resolve G4 structures. We used a recombinant nuclear form of Saccharomyces cerevisiae Pif1 to characterize Pif1-mediated DNA unwinding with a substrate mimicking an ongoing lagging strand synthesis stalled by G4s, which resembles a replication origin and a G4-structured flap in Okazaki fragment maturation. We find that the presence of G4 may greatly stimulate the Pif1 helicase to unwind duplex DNA. Further studies reveal that this stimulation results from G4-enhanced Pif1 dimerization, which is required for duplex DNA unwinding. This finding provides new insights into the properties and functions of G4s. We discuss the observed activation phenomenon in relation to the possible regulatory role of G4s in the rapid rescue of the stalled lagging strand synthesis by helping the replicator recognize and activate the replication origin as well as by quickly removing the G4-structured flap during Okazaki fragment maturation.


Subject(s)
DNA Helicases/metabolism , DNA/metabolism , G-Quadruplexes , Base Sequence , Biocatalysis , DNA/chemistry , Kinetics , Molecular Sequence Data , Nucleic Acid Conformation , Spectrometry, Fluorescence
6.
Biochem J ; 466(1): 189-99, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25471447

ABSTRACT

Recent advances in G-quadruplex (G4) studies have confirmed that G4 structures exist in living cells and may have detrimental effects on various DNA transactions. How helicases resolve G4, however, has just begun to be studied and remains largely unknown. In the present paper, we use single-molecule fluorescence assays to probe Pif1-catalysed unfolding of G4 in a DNA construct resembling an ongoing synthesis of lagging strand stalled by G4. Strikingly, Pif1 unfolds and then halts at the ss/dsDNA junction, followed by rapid reformation of G4 and 'acrobatic' re-initiation of unfolding by the same monomer. Thus, Pif1 unfolds single G4 structures repetitively. Furthermore, it is found that Pif1 unfolds G4 sequentially in two large steps. Our study has revealed that, as a stable intermediate, G-triplex (G3) plays an essential role in this process. The repetitive unfolding activity may facilitate Pif1 disrupting the continuously reforming obstructive G4 structures to rescue a stalled replication fork. The proposed mechanism for step-wise unfolding of G4 is probably applicable to other helicases that resolve G4 structures for maintaining genome stability.


Subject(s)
DNA Helicases/chemistry , DNA, Single-Stranded/chemistry , G-Quadruplexes , Genome, Fungal , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Biocatalysis , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication , DNA, Single-Stranded/metabolism , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Gene Expression , Genomic Instability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...