Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Dis ; 104(4): 1231-1238, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32065563

ABSTRACT

Powdery mildew, which is caused by Blumeria graminis f. sp. tritici (Bgt), is a disease of wheat worldwide. Xiaobaidong is a Chinese wheat landrace, which still maintains good resistance against powdery mildew. To obtain more genetic markers closely linked to the powdery mildew resistance gene mlxbd and narrow the candidate region for its isolation, new simple sequence repeats and cross intron-spanning markers were designed based on the genome sequence of Triticum aestivum cultivar Chinese Spring chromosome 7BL. The flanking markers 7BLSSR49 and WGGC5746 were found to be tightly linked to mlxbd at genetic distances of 0.4 cM and 0.3 cM, respectively. The resistance locus was mapped to a 63.40 kb and 0.29 Mb region of the Chinese Spring genome and Zavitan genome, respectively. The linked markers of mlxbd could be used as diagnostic markers for mlxbd. The linked molecular markers and delineated genomic region in the sequenced Chinese Spring genome will assist the future map-based cloning of mlxbd.


Subject(s)
Disease Resistance , Triticum , Chromosome Mapping , Genes, Plant , Humans , Plant Diseases
2.
PLoS One ; 10(3): e0121462, 2015.
Article in English | MEDLINE | ID: mdl-25815468

ABSTRACT

To determine the influence of plant density and powdery mildew infection of winter wheat and to predict grain yield, hyperspectral canopy reflectance of winter wheat was measured for two plant densities at Feekes growth stage (GS) 10.5.3, 10.5.4, and 11.1 in the 2009-2010 and 2010-2011 seasons. Reflectance in near infrared (NIR) regions was significantly correlated with disease index at GS 10.5.3, 10.5.4, and 11.1 at two plant densities in both seasons. For the two plant densities, the area of the red edge peak (Σdr680-760 nm), difference vegetation index (DVI), and triangular vegetation index (TVI) were significantly correlated negatively with disease index at three GSs in two seasons. Compared with other parameters Σdr680-760 nm was the most sensitive parameter for detecting powdery mildew. Linear regression models relating mildew severity to Σdr680-760 nm were constructed at three GSs in two seasons for the two plant densities, demonstrating no significant difference in the slope estimates between the two plant densities at three GSs. Σdr680-760 nm was correlated with grain yield at three GSs in two seasons. The accuracies of partial least square regression (PLSR) models were consistently higher than those of models based on Σdr680760 nm for disease index and grain yield. PLSR can, therefore, provide more accurate estimation of disease index of wheat powdery mildew and grain yield using canopy reflectance.


Subject(s)
Edible Grain/microbiology , Models, Theoretical , Plant Diseases/microbiology , Triticum/growth & development , Ascomycota/isolation & purification , Ascomycota/pathogenicity , Crops, Agricultural/microbiology , Edible Grain/growth & development , Plant Leaves/microbiology , Seasons , Triticum/microbiology
3.
Plant Dis ; 99(3): 395-400, 2015 Mar.
Article in English | MEDLINE | ID: mdl-30699700

ABSTRACT

Disease severity of wheat powdery mildew, caused by Blumeria graminis f. sp. tritici, was recorded weekly in fungicide-free field plots for three successive seasons from 2009 to 2012 in Langfang City, Hebei Province, China. Airborne conidia of B. graminis f. sp. tritici were trapped using a volumetric spore sampler, and meteorological data were collected using an automatic weather station. Cumulative logit models were used to relate the development of wheat powdery mildew to weather variables and airborne conidia density. Density of airborne conidia was the most important variate; further addition of weather variables, although statistically significant, increased model performance only slightly. A model based on variables derived from temperature and humidity had a generalized R2 of 72.4%. Although there were significant differences in model parameters among seasons, fine adjustment did not increase model performance significantly.

4.
Pest Manag Sci ; 70(2): 219-27, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23512505

ABSTRACT

BACKGROUND: Root-knot nematodes and soil-borne diseases constrain the rapid development of protected agriculture in China, especially while phasing out methyl bromide (MB). The fumigant sulfuryl fluoride (SF) is currently used as an alternative to MB for the disinfestation of buildings and post-harvest commodities. Our experiments aimed to evaluate a novel application of SF as a soil fumigant in greenhouses in China. RESULTS: Dose-response experiments indicated that SF has good efficacy on root-knot nematodes (Meloidogyne spp.) and moderate activity against Fusarium spp. and weeds (Digitaria sanguinalis (L.) Scop. and Abutilon theophrasti Medicus). The field trials indicates that SF has good efficacy, between 80 and 94%, on Meloidogyne spp., and Fusarium spp. at the rates of 25-50 g m(-2) in tomato and cucumber in Beijing and Shandong Province. Marketable yield and plant vigour was not significantly different in SF and MB treatments. SF has lower emissions than MB during the fumigation operation. It is simple to apply, can be used at low temperature, and has a short plant-back time. SF was found to be an economically feasible alternative to MB for nematode control in China. CONCLUSION: SF can be used as a soil fumigant to control root-knot nematodes and to reduce the levels of key soil pathogens.


Subject(s)
Fumigation/methods , Pesticides/toxicity , Soil , Sulfinic Acids/toxicity , Animals , Biological Assay , China , Dose-Response Relationship, Drug , Feasibility Studies , Fumigation/economics , Fusarium/drug effects , Gases/chemistry , Gases/toxicity , Nematoda/drug effects , Pesticides/chemistry , Phytophthora/drug effects , Sulfinic Acids/chemistry , Weed Control
5.
Plant Dis ; 97(9): 1168-1174, 2013 Sep.
Article in English | MEDLINE | ID: mdl-30722407

ABSTRACT

Blumeria graminis f. sp. tritici, the pathogen that causes wheat powdery mildew, can oversummer as mycelia or conidia on leaves of volunteer wheat plants in cool mountainous areas in China. In this study, the regions in China where B. graminis f. sp. tritici can oversummer were identified on the basis of the probability that temperature remains below a critical temperature that is lethal to B. graminis f. sp. tritici. Two methods, one describing the relationship between the average temperature (20 to 26°C) in a given continuous 10-day period and wheat powdery mildew severity, the other describing the relationship between the average temperature (26 to 33°C) and the number of lethal days on powdery mildew development, were used to calculate the oversummering probability using weather data for 743 sites across China. Spatial interpolation based on the ordinary kriging method was conducted for the regions without observation. Oversummering probability values were similar for most locations estimated between the two methods. The B. graminis f. sp. tritici oversummering regions in China were identified to be in mountainous or high-elevation areas, including most regions of Yunnan, west and central areas of Guizhou, south and northwest Sichuan, south and east Gansu, south Ningxia, north and west Shaanxi, central-north Shanxi, west Henan and Hubei, and some regions in Qinghai, Tibet, and Xinjiang. When the oversummering sites from this study were compared with observed survey data for some of these sites, about 90% of sites where B. graminis f. sp. tritici oversummering was observed had been found suitable by both methods. The coincidence frequency and the area under the receiver operating characteristic curve for model 2 were higher, albeit only slightly, than those for model 1. Thus, both methods may be used to assist in disease management and further investigation on pathogen oversummering.

6.
Theor Appl Genet ; 125(7): 1425-32, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22772588

ABSTRACT

Powdery mildew is one of the most devastating diseases of wheat in areas with cool and maritime climates. Chinese wheat landrace Baihulu confers a high level of resistance against a wide range of Blumeria graminis DC f. sp. tritici (Bgt) races, especially those currently prevailing in Shaanxi. The objectives of this study were to determine the chromosome bin location of the mlbhl gene from Baihulu and its allelism with Pm24. To investigate the inheritance of powdery mildew resistance and detect adjacent molecular markers, we constructed a segregating population of 301 F(2) plants and corresponding F(2:3) families derived from Baihulu/Shaanyou 225. Genetic analysis revealed that a single dominant gene was responsible for seedling stage powdery mildew resistance in Baihulu. A genetic map comprising Xgwm106, Xgwm337, Xgwm1675, Xgwm603, Xgwm789, Xbarc229, Xgpw4503, Xcfd72, Xcfd83, Xcfd59, Xcfd19, and mlbhl spanned 28.2 cM on chromosome 1D. Xgwm603/Xgwm789 and Xbarc229 were flanking markers tightly linked to mlbhl at genetic distances of 1.5 and 1.0 cM, respectively. The mlbhl locus was located in chromosome bin 1DS 0.59-1.00 delimited by the SSR markers Xgwm337 and Xbarc229. When tested with a differential array of 23 Bgt isolates Baihulu displayed a response pattern that was clearly distinguishable from that of Chiyacao and varieties or lines possessing documented Pm genes. Allelism analysis indicated that mlbhl is a new gene, either allelic or closely linked with Pm24. The new gene was designated Pm24b.


Subject(s)
Alleles , Ascomycota/physiology , Chromosome Mapping/methods , Disease Resistance/genetics , Genes, Plant/genetics , Plant Diseases/genetics , Triticum/genetics , Chromosomes, Plant/genetics , Genetic Loci/genetics , Genetic Markers , Inheritance Patterns/genetics , Microsatellite Repeats/genetics , Plant Diseases/microbiology , Polymerase Chain Reaction , Triticum/immunology , Triticum/microbiology
7.
J Appl Genet ; 52(2): 137-43, 2011 May.
Article in English | MEDLINE | ID: mdl-21107782

ABSTRACT

Powdery mildew disease caused by Blumeria graminis f. sp. tritici (Bgt) is an economically important disease in wheat worldwide. The identification of germplasms resistant to the disease can not only facilitate the breeding of resistant cultivars, but can also broaden the diversity of resistance genes. The Mexican M53 is a synthetic hexaploid wheat line developed at the International Maize and Wheat Improvement Center (CIMMYT) from the cross between Triticum durum and Aegilops tauschii249. Infection of M53 with 15 different pathogen races revealed that the resistance in M53 was race-dependent and effective against the majority of the tested Bgt races, including the race 15 predominant in the Beijing wheat growing area. Inoculation of the parents of M53 with the race 15 demonstrated that M53 and Ae. tauschii249 were resistant, whereas T. durum was susceptible. The inoculation of three segregating F(2) populations developed from the crosses between M53 and three susceptible Chinese wheat cultivars with the race 15 showed that the resistant gene in M53 segregated in a single dominant manner. Amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers were used to map the gene in a segregating F(2) population consisting of 213 lines developed from the cross Wan7107 × M53. Two closely linked AFLP markers, Apm109 and Apm161, were identified to flank the gene with genetic distances of 1.0 cM and 3.0 cM, respectively. The recognized gene was assigned to the long arm of chromosome 5D as determined by three linked SSR markers, Xwmc289b, Xgwm583, and Xgwm292, and by the physical mapping of Apm109 using Chinese Spring nullisomic-tetrasomic and ditelosomic stocks. The resistance gene identified in M53, temporarily designated as Pm-M53, could be used in local wheat-breeding programs to improve powdery mildew resistance.


Subject(s)
Chromosome Mapping , Plant Immunity/genetics , Saccharomycetales , Triticum/genetics , Amplified Fragment Length Polymorphism Analysis , Chromosome Segregation , Genes, Dominant , Genetic Enhancement , Genetic Linkage , Genetic Markers , Heredity , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Leaves/immunology , Plant Leaves/microbiology , Repetitive Sequences, Nucleic Acid , Triticum/immunology , Triticum/microbiology
8.
Theor Appl Genet ; 121(8): 1613-21, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20686747

ABSTRACT

Powdery mildew caused by Blumeria graminis f. sp. tritici is one of the most important wheat diseases worldwide and breeding for resistance using diversified disease resistance genes is the most promising approach to prevent outbreaks of powdery mildew. A powdery mildew resistance gene, originating from wild emmer wheat (Triticum turgidum var. dicoccoides) accessions collected from Israel, has been transferred into the hexaploid wheat line 3D232 through crossing and backcrossing. Inoculation results with 21 B. graminis f. sp. tritici races indicated that 3D232 is resistant to all of the powdery mildew isolates tested. Genetic analyses of 3D232 using an F(2) segregating population and F(3) families indicated that a single dominant gene, Ml3D232, confers resistance in the host seedling stage. By applying molecular markers and bulked segregant analysis (BSA), we have identified polymorphic simple sequence repeats (SSR), expressed sequence tags (EST) and derived sequence tagged site (STS) markers to determine that the Ml3D232 is located on chromosome 5BL bin 0.59-0.76. Comparative genetic analyses using mapped EST markers and genome sequences of rice and Brachypodium established co-linearity of the Ml3D232 genomic region with a 1.4 Mb genomic region on Brachypodium distachyon chromosome 4, and a 1.2 Mb contig located on the Oryza sativa chromosome 9. Our comparative approach enabled us to develop new EST-STS markers and to delimit the genomic region carrying Ml3D232 to a 0.8 cM segment that is collinear with a 558 kb region on B. distachyon. Eight EST markers, including an NBS-LRR analog, co-segregated with Ml3D232 to provide a target site for fine genetic mapping, chromosome landing and map-based cloning of the powdery mildew resistance gene. This newly developed common wheat germplasm provides broad-spectrum resistance to powdery mildew and a valuable resource for wheat breeding programs.


Subject(s)
Ascomycota/physiology , Chromosome Mapping/methods , Chromosome Segregation/genetics , Genes, Plant/genetics , Immunity, Innate/genetics , Plant Diseases/immunology , Triticum/genetics , Ascomycota/isolation & purification , Base Sequence , Brachypodium/genetics , Chromosomes, Plant/genetics , Expressed Sequence Tags , Genomics , Microsatellite Repeats/genetics , Oryza/genetics , Physical Chromosome Mapping , Plant Diseases/genetics , Plant Diseases/microbiology , Sequence Homology, Nucleic Acid , Triticum/immunology , Triticum/microbiology
9.
Theor Appl Genet ; 119(2): 223-30, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19407985

ABSTRACT

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases worldwide in areas with cool or maritime climates. Wild emmer (Triticum turgidum var. dicoccoides) is an important potential donor of disease resistances and other traits for common wheat improvement. A powdery mildew resistance gene was transferred from wild emmer accession G-303-1M to susceptible common wheat by crossing and backcrossing, resulting in inbred line P63 (Yanda1817/G-303-1 M//3*Jing411, BC(2)F(6)). Genetic analysis of an F(2) population and the F(2:3) families developed from a cross of P63 and a susceptible common wheat line Xuezao showed that the powdery mildew resistance in P63 was controlled by a single recessive gene. Molecular markers and bulked segregant analysis were used to characterize and map the powdery mildew resistance gene. Nine genomic SSR markers (Xbarc7, Xbarc55, Xgwm148, Xgwm257, Xwmc35, Xwmc154, Xwmc257, Xwmc382, Xwmc477), five AFLP-derived SCAR markers (XcauG3, XcauG6, XcauG10, XcauG20, XcauG22), three EST-STS markers (BQ160080, BQ160588, BF146221) and one RFLP-derived STS marker (Xcau516) were linked to the resistance gene, designated pm42, in P63. pm42 was physically mapped on chromosome 2BS bin 0.75-0.84 using Chinese Spring nullisomic-tetrasomic, ditelosomic and deletion lines, and was estimated to be more than 30 cM proximal to Xcau516, a RFLP-derived STS marker that co-segregated with the wild emmer-derived Pm26 which should be physically located in 2BS distal bin 0.84-1.00. pm42 was highly effective against 18 of 21 differential Chinese isolates of B. graminis f. sp. tritici. The closely linked molecular markers will enable the rapid transfer of pm42 to wheat breeding populations thus adding to their genetic diversity.


Subject(s)
Ascomycota/physiology , Chromosome Mapping , Genes, Plant , Immunity, Innate/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology , Amplified Fragment Length Polymorphism Analysis , Chromosomes, Plant/genetics , Genetic Linkage , Genetic Markers , Plant Diseases/immunology
10.
Plant Dis ; 91(4): 368-374, 2007 Apr.
Article in English | MEDLINE | ID: mdl-30781176

ABSTRACT

High yield potential and the wide adaptability of wheat-rye T1BL·1RS translocation lines are attractive to breeders. The wheat-rye lines Lankao 1, 3, 4, and 5 were resistant to a wide spectrum of wheat powdery mildew (Blumeria graminis f. sp. tritici) isolates from both China and Canada. They also were resistant to a mixture of wheat stem rust (Puccinia graminis f. sp. tritici) pathotypes (98WSR) and wheat stripe rust (P. striiformis f. sp. tritici) races from western Canada and China. Colonization of wheat curl mite (WCM) (Aceria tosichella) resulted in slower development of rolling and trapping leaves in the Lankao lines than in the WCM-susceptible check cultivars. The delayed development of Wheat streak mosaic (WSM) symptoms on Lankao lines was observed when transmitted by viruliferous WCM, even though they were susceptible to Wheat streak mosaic virus (WSMV). This effect of Lankao lines on limiting the spread of WSM was comparable with other known sources of WCM resistance. Sequential C-banding and genomic in situ hybridization analyses revealed the presence of a pair of T1BL·1RS translocated chromosomes in the Lankao lines. Segregation analysis of the F2 progeny plants derived from crosses between Lankao 4 and the susceptible wheat cvs. Mingxian 169 and Lovrin 13 indicated that a single dominant gene was responsible for the isolate-specific resistance against wheat powdery mildew in Lankao 4. Polymerase chain reaction analysis using an STS marker amplified rye chromatin in powdery mildew-resistant and -susceptible F2 plants of the Mingxian 169 × Lankao 4 cross demonstrated that the resistance of Lankao 4 was not controlled by a gene or genes located on the rye chromosome arm of T1BL·1RS. The resistance of the Lankao lines to diseases and limitation of the spread of WSMV, in combination with good quality and high yield potential, makes them useful for wheat improvement and production.

SELECTION OF CITATIONS
SEARCH DETAIL
...