Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38683604

ABSTRACT

Paramyxoviridae is one of the most well known and largest virus families, including some animal and human pathogens, such as the Hendra, Nipah, and Rinderpest viruses, with a high potential for the emergence of human diseases. Based on recent phylogenetic analyses, two new genera (Narmovirus and Jeilongvirus) have been described. The newly recognized genus Jeilongvirus has rapidly increased in number and has grown to 15 species from 7 a few years ago. However, little is known about the diversity, host range, or evolution of Jeilongvirus. As a well-known host reservoir for many pathogens, rodents have always been the focus for characterizing their pathogenic potential. In this study, we isolated a Tailam virus strain (RN-JH-YN-2022-1) belonging to the genus Jeilongvirus from Rattus norvegicus in Yunnan Province, China. The virus presented a near-complete genome (19,046 nucleotides). Similar to other members of the genus Jeilongvirus, the genome of RN-JH-YN-2022-1 contains eight basic genes (3'-N-P/V/C-M-F-SH-TM-G-L-5') with 88.88% sequence identity to Tailam virus (TL8K). Additionally, we discuss the pattern of genus Jeilongvirus diversity and the possible route of spread of the Tailam virus, which could provide new clues into the host range, virus diversity, and geographical distribution of the genus Jeilongvirus.

2.
Aging (Albany NY) ; 15(22): 12907-12926, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37976123

ABSTRACT

BACKGROUND: Given the poor prognosis of lung squamous cell carcinoma (LUSC), the aim of this study was to screen for new prognostic biomarkers. METHODS: The TGCA_LUSC dataset was used as the training set, and GSE73403 was used as the validation set. The genes involved in necroptosis-related pathways were acquired from the KEGG database, and the differential genes between the LUSC and normal samples were identified using the GSEA. A necroptosis signature was constructed by survival analysis, and its correlation with patient prognosis and clinical features was evaluated. The molecular characteristics and drug response associated with the necroptosis signature were also identified. The drug candidates were then validated at the cellular level. RESULTS: The TCGA_LUSC dataset included 51 normal samples and 502 LUSC samples. The GSE73403 dataset included 69 samples. 159 genes involved in necroptosis pathways were acquired from the KEGG database, of which most showed significant differences between two groups in terms of genomic, transcriptional and methylation alterations. In particular, CHMP4C, IL1B, JAK1, PYGB and TNFRSF10B were significantly associated with the survival (p < 0.05) and were used to construct the necroptosis signature, which showed significant correlation with patient prognosis and clinical features in univariate and multivariate analyses (p < 0.05). Furthermore, CHMP4C, IL1B, JAK1 and PYGB were identified as potential targets of trametinib, selumetinib, SCH772984, PD 325901 and dasatinib. Finally, knockdown of these genes in LUSC cells increased chemosensitivity to those drugs. CONCLUSION: We identified a necroptosis signature in LUSC that can predict prognosis and identify patients who can benefit from targeted therapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Necroptosis/genetics , Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/pathology , Prognosis , Lung/pathology
3.
Chem Commun (Camb) ; 59(48): 7431-7434, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37249313

ABSTRACT

The complexation behaviors of pagoda[n]arenes (n = 4, 5) with ferrocene, ferrocenium and analogues cobaltocenium were studied. The inclusion complexes of pagoda[n]arenes can protect ferrocenium from oxidation in organic solvents and improve the stability and oxygen resistance of ferrocenium.

4.
Org Lett ; 25(2): 364-368, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36625525

ABSTRACT

Herein, host-guest complexation between pagoda[n]arenes (n = 4, P4; n = 5, P5) and tropylium cation (G) was investigated in detail. It was found that both P4 and P5 showed surprisingly strong binding affinities toward the tropylium cation with association constants of more than 107 M-1 for the 1:1 host-guest complexes. The theoretical calculations showed different host-guest complexion ways for complexes G@P4 and G@P5 and the strong π···π interactions and multiple C-H···π interactions play a very important role in the formation of these stable complexes, respectively. Moreover, the switchable processes of guest binding and release in the complexes can be effectively controlled by redox stimuli, and they can be also visible by the color and fluorescence changes.

5.
Front Oncol ; 12: 1038925, 2022.
Article in English | MEDLINE | ID: mdl-36439516

ABSTRACT

Background: Spindle and kinetochore-associated complex subunits 1-3 (SKA1-3) stabilize the kinetochore-attached spindle microtubules in metaphase. Due to the dysregulation in multiple cancers, SKA1-3 is considered a predictor for the prognosis of the patients. However, the potential clinical applications of SKA1-3, particularly in hepatocellular carcinoma (HCC) prognosis and progression, have completely unknown yet. Methods: For the analysis of SKA1-3 expression and applications in clinics in HCC patients, several databases, such as STRING, UALCAN, GEO, and TCGA, were searched. In addition, the underlying mechanisms of SKA for the regulation of HCC occurrence, development, and progression were also explored. Results: Compared to the normal controls, HCC patients showed dramatically elevated SKA1-3 expression at the mRNA level, and the values of the area under the curve (AUC) were 0.982, 0.887, and 0.973, respectively. Increased SKA1-3 expression levels were associated with the clinical stage, age, body mass index, tumor grade, tissue subtype, and Tp53 mutation status in HCC patients. The analyses of Kyoto Encyclopedia of Genes and Genome (KEGG) and Gene ontology (GO) demonstrated that SKA1-3 are enriched mainly in the Fanconi anemia, homologous recombination, spliceosome, DNA replication, and cell cycle signaling pathways. The hub genes, such as CDK1, CCNB1, CCNA2, TOP2A, BUB1, AURKB, CCNB2, BUB1B, NCAPG, and KIF11, were identified in protein-protein interactions (PPIs). The expression levels of hub genes were increased in HCC patients and predictive of a poor prognosis. Finally, the expression levels of SKA1-3 were determined using the GEO database. Conclusions: SKA1-3 are potential prognostic biomarkers of and targets for HCC. In addition, SKA1-3 may affect HCC prognosis via the Fanconi anemia pathway, homologous recombination, spliceosome, DNA replication, and cell cycle signaling pathway.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 218: 206-212, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-30995578

ABSTRACT

Hydrogen sulfide (H2S) is a kind of gaseous signal molecule in many physiological processes. In order to detect H2S, a novel "turn on" fluorescent probe 6,12-dihydroxyperylene-1,7-dione (DPD) was designed and synthesized. The probe DPD is fluorescence silence, while the addition of H2S induces an obvious green fluorescence with an obvious color change from dark blue to yellow-green. The probe shows excellent selectivity, fast response (2.5min) and linear curve (0-90µM) in wide effective pH range (4-10). Competition experiments are also revealed in corresponding studies and the detection limit is 3.6µM. The response mechanism is proved to be the reduction of the probe by H2S, which is confirmed by 1H NMR. Furthermore, through the fluorescence turn-on signal toward H2S in Hela cells, probe DPD was successfully applied to monitor H2S in living Hela cells.


Subject(s)
Fluorescent Dyes/chemistry , Hydrogen Sulfide/analysis , Perylene/analogs & derivatives , Quinones/chemistry , Fluorescence , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Limit of Detection , Microscopy, Confocal , Optical Imaging , Perylene/chemical synthesis , Perylene/chemistry , Quinones/chemical synthesis , Spectrometry, Fluorescence
7.
J Cancer ; 9(15): 2723-2733, 2018.
Article in English | MEDLINE | ID: mdl-30087713

ABSTRACT

Gecko (Gekko japonicus) extracts have been used in traditional Chinese medicine for many years. It has been proven that the gecko polypeptide mixture (GPM) extracted from gecko can inhibit the growth of multiple types of tumor cells. In order to investigate the possible anti-tumor molecular mechanisms of GPM, we used RNA-seq technology to identify the differentially expressed genes (DEGs) of human hepatocellular carcinoma (HCC) HepG2 cells treated with or without GPM. MTT assay was used to detect the viability of HepG2 cells. DAPI fluorescence staining was performed to observe morphological changes in the nuclei of HepG2 cells. Western blot analysis was applied to observe the expressions of apoptosis-related and endoplasmic reticulum stress (ERS)-related proteins in HepG2 cells. Flow cytometry assay was performed to detect the apoptosis and reactive oxygen species (ROS) in HepG2 cells. Our results showed that GPM inhibited HepG2 cells proliferation and induced the apoptosis of HepG2 cells. RNA-seq analysis suggested that the ER-nucleus signaling pathway involved in the anti-cancer molecular mechanism of GPM. Therefore, GPM may induce apoptosis in HepG2 cells via the ERs pathway.

8.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-666605

ABSTRACT

OBJECTIVE To explore the role of gecko crude peptides (GCPs) in the proliferation, apoptosis, migration and lymphangiogenesis of human hepatocellular carcinoma cells (HepG2) and human lymphaticendothelial cells (HLECs) in vitro. METHODS The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate the anti- proliferative effect of GCPs and siRNA-VEGF-C on HepG2 cells, Hoechst 33258 staining and flow cytometry were performed to analyze cycle and apoptosis. The migration and invasion ability of cells were assayed by transwell chamber experiment and wound-healing assay. The protein and mRNA expressions of vascular endo?thelial growth factor-C (VEGF-C) and CXC chemokine receptor-4 (CXCR4) were detected by q-PCR, immunofluorescence, Western blot. The protein expressions of the extracellular signal regulated kinase (ERKI/2), c-Jun N-terminal kinase (JNK), p38-mitogen activated protein kinases (p38 MAPK), serine/threonine kinase (Akt) and phosphatidylinositol- 3- kinase (PI3K) were detected by western blot. The anti-lymphangiogenesis effect of GCPs on the HLECs was analyzed using an in vitro tube-formation assay. The protein and mRNA expressions of vascular endothelial growth factor receptor-3 (VEGFR-3) and stromal cell-derived factor-1 (SDF-1) were detected by q-PCR, Western blot. RESULTS GCPs and siRNA-VEGF-C inhibited HepG2 proliferation, invasion and migration, and the most obvious inhibitory effect was both synergistic effects. Thus, GCPs suppressed HLECs proliferation, migration and tube-like structure formationin a dose- dependent manner, and had inhibitory effect of tumor- induced lymphangiogenesis in vitro. Additionally, we found that GCPs and siRNA- VEGF- C decreased the expressions of MMP-2, MMP-9, VEGF-C, CXCR4, phospho-ERK1/2, phospho-P38, phospho-JNK and PI3K in HepG2 cells. Moreover, GCPs had a dose-dependent depressive effecton the expressions of VEGFR- 3, SDF- 1 in HLECs. CONCLUSION The low expression of VEGF- C mediated by siRNA-VEGF-C and GCPs inhibit tumor proliferation, invasion and migrationby suppressing the MAPK signaling pathway through reduced levels of VEGF-C, and GCPs inhibit tumor lymphangiogenesis by suppressing the CXCR4/SDF-1 signaling pathway through suppressed VEGF-C/VEGFR-3.

9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-666495

ABSTRACT

OBJECTIVE In order to investigate the possible anti-tumor molecular mechanisms of gecko polypeptide mixture (GPM). METHODS RNA-seq technology was used to identify the differen?tially expressed genes of human hepatocellular carcinoma (HCC) HepG2 cells treated with or without GPM. The HepG2 cells were treated with different concentration of GPM (0, 0.1, 0.2, 0.3, 0.4 mg·mL-1) for 6 h, 12 h and 24 h, respectively. MTT assay was used to detect the viability of HepG2 cells. DAPI fluorescence staining was performed to observe nucleus morphological changes of HepG2 cells. Western blot analysis was applied to observe the expression of apoptosis-related proteins in HepG2 cells. RESULTS The results showed that GPM could induce HepG2 cells apoptosis and influence HepG2 cells proliferation in a dose-dependent manner. We applied many analysis methods, including differen?tially expressed genes analysis, Gene Ontology (GO) enrichment analysis, KEGG pathway enrichment analysis, protein- protein interaction network analysis to screen out possible molecular mechanisms. ER-nucleus signaling pathway, cellular response to stress and apoptotic processes were identified the potential anti-cancer molecular biological process of GPM. GPM may also induce apoptosis in HepG2 cells via endoplasmic reticulum stress pathway. The mechanism is closely related to ERs, which might be beneficial for clinical therapy of HCC. CONCLUSION GPM can inhibit cells proliferation and induce apoptosis in HepG2 cells. The gene expression profile of GPM in HepG2 cells was obtained. The present study revealed the potential anti-tumor mechanism of GPM.

SELECTION OF CITATIONS
SEARCH DETAIL
...