Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
J Vet Sci ; 21(4): e68, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32735103

ABSTRACT

A fluorescent microsphere-based immunochromatographic strip test (FICT) was developed for the rapid, sensitive, and quantitative detection of porcine reproductive and respiratory syndrome virus (PRRSV) antibodies at the pen-side. The assay was based on the formation of a sandwich immune-complex (anti-pig IgG-PRRSV antibodies-NSP7/N), which was validated by a comparison with IDEXX-ELISA using 3325 clinical specimens. The diagnostic specificity, sensitivity, and accuracy of FICT were 97.28, 93.41, and 94.95%, respectively. FICT showed a good correlation with the virus neutralization assay. Overall, a promising pen-side diagnostic tool was developed for the rapid and quantitative detection of PRRSV antibodies within 15 min.


Subject(s)
Antibodies, Viral/immunology , Chromatography, Affinity/veterinary , Enzyme-Linked Immunosorbent Assay/veterinary , Porcine Reproductive and Respiratory Syndrome/diagnosis , Porcine respiratory and reproductive syndrome virus/isolation & purification , Animals , Chromatography, Affinity/methods , Enzyme-Linked Immunosorbent Assay/methods , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine respiratory and reproductive syndrome virus/immunology , Reagent Strips/therapeutic use , Swine
2.
Sheng Wu Gong Cheng Xue Bao ; 34(12): 2025-2034, 2018 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-30584713

ABSTRACT

Ebola virus (EBOV) is an extremely contagious pathogen first discovered in Africa associated with severe hemorrhagic disease in humans and nonhuman primates, which has resulted in at least 28 500 suspected cases and 11 300 confirmed deaths in 2014-2016 Ebola epidemic in West Africa. Rapid and sensitive detection of EBOV is the key to increasing the probability of survival and reducing infection rates in pandemic regions. Here, we report an ultrasensitive and instrument-free EBOV detection assay based on colloidal carbon immunochromatography. Carbon nanoparticle-labeled rabbit anti-EBOV-VP40 IgG were concentrated in the conjugate pad, monoclonal antibody (McAb, 4B7F9) against EBOV-VP40 and goat anti-rabbit IgG were immobilized on the nitrocellulose membrane with 2 µL/cm at a concentration of 1 mg/mL as test and control lines, respectively. Then the sample application pad, conjugate release pad, nitrocellulose membrane and absorbent pad were assembled into a lateral flow test strip. The test strip shows strong specificity against related viruses that share similar clinical symptoms and geographic range with EBOV, including marburg virus, influenza virus, yellow fever virus and dengue virus. In addition, 1 500 negative serums were tested with false-positive rate of 1.3‰ which significantly lower than that of ReEBOV™ colloidal gold test kit recommended by World Health Organization (WHO). The sensitivity of this strip was analyzed using inactivated EBOV with detection limit of 100 ng/mL (106 copies/mL) which clearly higher than that of ReEBOV™ dipstick (108 copies/mL). Furthermore, the strip showed excellent thermal stability characteristics in room temperature and could be as a point-of-care (POC), ultra-sensitive and specific promising candidate for EBOV serological screening in rural Africa or entry/exit ports.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Nanoparticles , Animals , Carbon , Humans , Rabbits
3.
Sheng Wu Gong Cheng Xue Bao ; 27(7): 1092-9, 2011 Jul.
Article in Chinese | MEDLINE | ID: mdl-22016994

ABSTRACT

In order to explore the influence of reaction temperature on the product composition, the effect of continuous temperature change (22 degrees C-60 degrees C, +/-0.1 degree C) on hydrolysis of yeast beta-glucan by endo-beta-1,3-glucanase was determined by using self-developed Biochem-temperature Characteristic Apparatus. The activation energy of enzymatic hydrolysis of yeast beta-glucan was 84.17 kJ/mol. The optimum temperature represented by accumulation of products decreased exponentially within a certain period of time. The components of the products were changed with reaction temperature. The length of oligosaccharides decreased with the increase of temperature. The main products were laminaribiose and laminaritriose at the temperature higher than 46 degrees C, while the main products were laminaripentaose and larger molecular weight components at the temperature lower than 30 degrees C. The results can provide precise parameters to control the reaction temperature of the production of 1,3-beta-D-glucooligosaccharides.


Subject(s)
Glucan Endo-1,3-beta-D-Glucosidase/chemistry , Glucan Endo-1,3-beta-D-Glucosidase/metabolism , Temperature , Yeasts/metabolism , beta-Glucans/metabolism , Enzyme Activation , Hydrolysis , Oligosaccharides/chemistry , Oligosaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...