Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 139: 267-280, 2024 May.
Article in English | MEDLINE | ID: mdl-38105054

ABSTRACT

The coexistence of cadmium (Cd(II)) and arsenate (As(V)) pollution has long been an environmental problem. Biochar, a porous carbonaceous material with tunable functionality, has been used for the remediation of contaminated soils. However, it is still challenging for the dynamic quantification and mechanistic understanding of the simultaneous sequestration of multi-metals in biochar-engineered environment, especially in the presence of anions. In this study, ferrihydrite was coprecipitated with biochar to investigate how ferrihydrite-biochar composite affects the fate of heavy metals, especially in the coexistence of Cd(II) and As(V). In the solution system containing both Cd(II) and As(V), the maximum adsorption capacities of ferrihydrite-biochar composite for Cd(II) and As(V) reached 82.03 µmol/g and 531.53 µmol/g, respectively, much higher than those of the pure biochar (26.90 µmol/g for Cd(II), and 40.24 µmol/g for As(V)) and ferrihydrite (42.26 µmol/g for Cd(II), and 248.25 µmol/g for As(V)). Cd(II) adsorption increased in the presence of As(V), possibly due to the changes in composite surface charge in the presence of As(V), and the increased dispersion of ferrihydrite by biochar. Further microscopic and mechanistic results showed that Cd(II) complexed with both biochar and ferrihydrite, while As(V) was mainly complexed by ferrihydrite in the Cd(II) and As(V) coexistence system. Ferrihydrite posed vital importance for the co-adsorption of Cd(II) and As(V). The different distribution patterns revealed by this study help to a deeper understanding of the behaviors of cations and anions in the natural environment.


Subject(s)
Cadmium , Water Pollutants, Chemical , Cadmium/analysis , Adsorption , Water Pollutants, Chemical/analysis , Charcoal
2.
J Hazard Mater ; 444(Pt A): 130327, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36434919

ABSTRACT

The electrochemical chlorination of urea to CO2 and N2 end-products, via active-chlorine-mediated oxidation under nearly neutral conditions, is an effective treatment for medium-concentrated urea-containing wastewater. Herein, we design a novel flow reactor integrated with three-dimensional hierarchically porous Ru/RuO2 architectures anchored on a Ti mesh. The hierarchically macroporous electrode can create sufficient exposure of catalytically active sites and facilitate the microscopic mass transport and diffusion inside the active layer, thereby contributing to the increased removal efficiency of urea-N and ammonia-N. The combined results of electrochemical measurements, UV-visible spectrometry and in situ Raman spectrometry, show that the OCl- species produced by chlorine evolution reaction (CER) are the main active constituents for removing urea-N. Theoretical calculations reveal thLTWAat the Ru/RuO2 possesses a moderate Cl binding strength, lower theoretical overpotentials of CER and a higher conductivity, compared with pure RuO2. On this basis, we assemble a circular flow reactor with the hierarchically porous electrodes in a two-electrode system to obtain an enhanced microfluidic process, which during 9 days of uninterrupted operation, at a high electrolysis current of 500 mA, achieve a total nitrogen removal of 92.6% and an energy consumption of 7.94 kWh kg-1 N, demonstrating the promising application of the novel process.


Subject(s)
Ammonia , Chlorine , Urea , Porosity , Halogens , Chlorides
3.
J Sci Food Agric ; 102(15): 6992-7002, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35689477

ABSTRACT

BACKGROUND: Feruloyl oligosaccharides (FOs), the ferulic acid ester of oligosaccharides, may possess the physiological functions of both ferulic acid and oligosaccharides, including antioxidative activity and gut microbiota modulation capacity. The present study aimed to investigate whether FOs could regulate the intestinal antioxidative capacity of rats by modulating the MAPKs/Nrf2 signaling pathway and gut microbiota. Thirty Wistar rats were randomly divided into five groups. Rats received a standard diet and were gavaged once daily with 0.85% normal saline, 100 mg kg-1 body weight vitamin C or FOs solution at doses of 20, 40 and 80 mg kg-1 body weight for 21 days. RESULTS: FOs strengthened the antioxidative capacity of the jejunum, as indicated by increased in contents of catalase, superoxide dismutase and glutathione peroxidase, as well as glutathione. Moreover, FOs administration upregulated the mRNA expression level of antioxidant-related genes (glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit and heme oxygenase-1) in the jejunum. Increases in phosphorylation levels of Nrf2, p38 and JNK were also observed. Administration with 40 mg kg-1 FOs altered the structure and composition of the cecal microbiota, which was indicated by the increased the relative abundances of Actinobacteria, Proteobacteria and Acidobacteriota, and the decreased the relative abundances of Firmicutes, Lachnospiraceae_NK4A136_group and Blautia. Furthermore, Spearman correlation analysis revealed that the altered cecal microbiota closely correlated with jejunal antioxidative capacity of rats. CONCLUSION: FOs could be used as an antioxidant for gut heath improvement through modulating the p38/JNK-Nrf2 signaling pathway and gut microbiota. © 2022 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Rats , Animals , Dietary Fiber , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Glutamate-Cysteine Ligase/metabolism , Rats, Wistar , Oligosaccharides , Signal Transduction , Body Weight
4.
BMC Vet Res ; 16(1): 245, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32664940

ABSTRACT

BACKGROUND: Impaired gut microbiota leads to pathogenic bacteria infection, pro-inflammatory response and post-weaning diarrhea. Enterotoxigenic Escherichia coli (ETEC) K88 is a major cause of post-weaning diarrhea in weaned piglets. Fermented soybean meal (FSBM) could relieve diarrhea, alleviate inflammatory response, and modulate gut microbiota of weaned piglets. We used ETEC K88-challenged weaned piglet model to investigate the effects of FSBM on the growth performance, inflammatory response and cecal microbiota. Twenty-four crossbred piglets (6.8 ± 0.5 kg; 21 ± 2 days of age) were allotted into 2 treatment fed the diets with or without FSBM (6% at the expense of soybean meal). Six weaned piglets in each diet treatment were challenged by ETEC K88 (1 × 109 CFU/piglets) on day 15. The experimental period lasted for 20 days. RESULTS: The ETEC K88 challenge decreased (p < 0.05) fecal consistency and plasma interleukin-10 (IL-10) concentration, while increased (p < 0.05) average daily feed intake (ADFI) and plasma tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) and interleukin 6 (IL-6) concentrations. After ETEC K88 challenge, dietary FSBM replacement increased (p < 0.05) final body weight (BW), average daily gain (ADG), ADFI, and fecal consistency, but decreased feed conversion ratio (FCR). The plasma IL-10 concentration of weaned piglets fed FSBM was higher (p < 0.05), while IL-1ß, IL-6 and TNF-α concentrations were lower (p < 0.05). Dietary FSBM replacement attenuated the increase of plasma TNF-α concentration and the decrease of ADG induced by ETEC K88 challenge (p < 0.05). High-throughput sequencing of 16S rRNA gene V4 region of cecal microbiota revealed that ETEC K88 challenge increased (p < 0.05) Campylobacter relative abundance on genus level. Dietary FSBM replacement resulted in higher (p < 0.05) relative abundances of Bacteroidetes and Prevotellaceae_NK3B31_group, and lower (p < 0.05) relative abundances of Proteobacteria and Actinobacillus. Furthermore, dietary FSBM replacement relieved the increase of Escherichia-Shigella relative abundance in weaned piglets challenged by ETEC K88 (p < 0.05). CONCLUSIONS: Dietary FSBM replacement improved growth performance and alleviated the diarrhea of weaned piglets challenged with ETEC K88, which could be due to modulation of cecal microbiota composition and down-regulation of inflammatory cytokines production.


Subject(s)
Animal Feed/analysis , Escherichia coli Infections/veterinary , Glycine max , Swine Diseases/diet therapy , Animals , Bacteria/classification , Cecum/microbiology , Cytokines/blood , Diarrhea/diet therapy , Diarrhea/microbiology , Diarrhea/veterinary , Diet/veterinary , Enterotoxigenic Escherichia coli , Escherichia coli Infections/diet therapy , Escherichia coli Infections/microbiology , Female , Fermentation , Gastrointestinal Microbiome/drug effects , Male , Sus scrofa , Swine , Swine Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...