Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Chemosphere ; 309(Pt 1): 136813, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36216110

ABSTRACT

A modified biochar for enhanced denitrification was developed through a facile pyrolysis method using sewage sludge as raw material and melamine as nitrogen source. Through electrochemical analysis, sludge-based pyrolysis biochar (SPBC) has superior electrical conductivity and poor redox activity. SPBC can increase the electron transfer through the geoconductor mechanism. The effect and the mechanism of SPBC on denitrification were studied. The nitrate treatment efficiency increased with the increase of SPBC dosage. From the perspective of molecular biology, the activities of NAR and NIR enzymes, the degradation efficiency of glucose and the ETSA of bacteria were all promoted with the increase of SPBC, thereby promoting the removal of NO3-. In addition, SPBC had a certain screening effect on microbial communities, and biodiversity decreased with the increase of SPBC dosage. Although the biodiversity decreased, the relative abundance of microorganisms conducive to denitrification increased with the increase of SPBC dosage. The transformation strategy of SPBC proposed in this paper provides a technical solution for sludge recycling and application for strengthening denitrification.


Subject(s)
Pyrolysis , Sewage , Denitrification , Nitrates , Charcoal/chemistry , Nitrogen/chemistry , Glucose , Bioreactors
2.
Sci Total Environ ; 833: 155275, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35429568

ABSTRACT

The use of biodegradable plastics may solve the pollution caused by conventional plastics in the future. However, microplastics and nanoplastics are produced during the aging process of biodegradable plastics. This work evaluated the formation of secondary microplastics and nanoplastics and the effects of aging factors (UV radiation and mechanical forces) during the degradation processes of various biodegradable plastics (poly(butylene adipate co-terephtalate) (PBAT), poly(butylene succinate) (PBS), and polylactic acid (PLA)) and conventional plastics (polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC)). This study also assessed the combined toxicity of secondary microplastics and Triclosan (TCS) on Tigriopus japonicas. The results showed that PLA and PBS could produce many microplastics. Most secondary microplastics were smaller than 50 µm. Primary pellets were more likely to generate microplastics through mechanical degradation than via photooxidation. In contrast, PBAT/PLA and PE bags were more likely to form microplastics through photooxidation than mechanical degradation. The secondary microplastics did not affect the survival of T. japonicas and the toxicity of TCS. This study highlights that risk assessment of biodegradable plastics, especially secondary microplastics, and nanoplastics, should be assessed in future studies.


Subject(s)
Biodegradable Plastics , Triclosan , Water Pollutants, Chemical , Microplastics/toxicity , Plastics/toxicity , Polyesters , Polyethylene , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...