Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 98(8): e0057024, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39023251

ABSTRACT

Virus-encoded microRNAs (miRNAs) exert diverse regulatory roles in the biological processes of both viruses and hosts. This study delves into the functions of AcMNPV-miR-2, an early miRNA encoded by Autographa californica multiple nucleopolyhedrovirus (AcMNPV). AcMNPV-miR-2 targets viral early genes ac28 (lef-6), ac37 (lef-11), ac49, and ac63. Overexpression of AcMNPV-miR-2 leads to reduced production of infectious budded virions (BVs) and diminished viral DNA replication. Delayed polyhedron formation was observed through light and transmission electron microscopy, and the larval lifespan extended in oral infection assays. Moreover, the mRNA expression levels of two Lepidoptera-specific immune-related proteins, Gloverin and Spod-11-tox, significantly decreased. These findings indicate that AcMNPV-miR-2 restrains viral load, reducing host immune sensitivity. This beneficial effect enables the virus to combat host defense mechanisms and reside within the host for an extended duration. IMPORTANCE: Virus-encoded miRNAs have been extensively studied for their pivotal roles in finetuning viral infections. Baculoviruses, highly pathogenic in insects, remain underexplored concerning their encoded miRNAs. Previous reports outlined three AcMNPV-encoded miRNAs, AcMNPV-miR-1, -miR-3, and -miR-4. This study delves into the functions of another AcMNPV-encoded miRNA, AcMNPV-miR-2 (Ac-miR-2). Through a comprehensive analysis of target gene expression, the impact on larvae, and variations in host immune-related gene expression, we elucidate a functional pathway for Ac-miR-2. This miRNA suppresses viral load and infectivity and prolongs lifespans of infected larva by downregulating specific viral early genes and host immune-related genes. These mechanisms ultimately serve the virus's primary goal of enhanced propagation. Our study significantly contributes to understanding of the intricate regulatory mechanisms of virus-encoded miRNAs in baculovirus infections.


Subject(s)
Gene Expression Regulation, Viral , MicroRNAs , Nucleopolyhedroviruses , Viral Proteins , Virus Replication , Nucleopolyhedroviruses/genetics , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Larva/virology , Larva/genetics , Sf9 Cells , Viral Load , Spodoptera/virology , Virion/genetics , Virion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...