Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Gene ; 927: 148754, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972555

ABSTRACT

Pseudomonas aeruginosa PA2196 is a TetR family transcriptional repressor. In this study, the deletion of the PA2196 gene caused increased expression of the downstream gene curA (PA2197), which encodes for a NADPH-dependent curcumin/dihydrocurcumin reductase. The PA2196 gene was then identified as curR, and a DNA footprinting assay showed that CurR directly bound to the curA promoter at an imperfect 15-bp inverted repeat, 5'-TAGTTGA-C-TGGTCTA-3'. A curA promoter-lacZ fusion assay and site-directed mutagenesis further demonstrated that the identified CurR binding site plays a crucial role in curA repression by CurR. curA transcription was inducible by sodium hypochlorite (NaOCl) and N-ethylmaleimide (NEM) but not by hydrogen peroxide, organic hydroperoxide, or curcumin. The oxidation and alkylation of CurR by NaOCl and NEM, respectively, resulted in the inactivation of its DNA-binding activity, which induced curA expression. Under the tested conditions, the deletion of either curR or curA did not affect the survival of P. aeruginosa under NaOCl stress in the absence or presence of curcumin.

2.
Appl Environ Microbiol ; 89(1): e0171422, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36533942

ABSTRACT

Glutaredoxins (Grxs), ubiquitous redox enzymes belonging to the thioredoxin family, catalyze the reduction of thiol-disulfide exchange reactions in a glutathione-dependent manner. A Pseudomonas aeruginosa ΔgrxD mutant exhibited hypersensitivity to oxidative stress-generating agents, such as paraquat (PQ) and cumene hydroperoxide (CHP). In vitro studies showed that P. aeruginosa GrxD acts as an electron donor for organic hydroperoxide resistance enzyme (Ohr) during CHP degradation. The ectopic expression of iron-sulfur cluster ([Fe-S]) carrier proteins, including ErpA, IscA, and NfuA, complements the function of GrxD in the ΔgrxD mutant under PQ toxicity. Constitutively high expression of iscR, nfuA, tpx, and fprB was observed in the ΔgrxD mutant. These results suggest that GrxD functions as a [Fe-S] cluster carrier protein involved in [Fe-S] cluster maturation. Moreover, the ΔgrxD mutant demonstrates attenuated virulence in a Drosophila melanogaster host model. Altogether, the data shed light on the physiological role of GrxD in oxidative stress protection and virulence of the human pathogen, P. aeruginosa. IMPORTANCE Glutaredoxins (Grxs) are ubiquitous disulfide reductase enzymes. Monothiol Grxs, containing a CXXS motif, play an essential role in iron homeostasis and maturation of [Fe-S] cluster proteins in various organisms. We now establish that the human pathogen Pseudomonas aeruginosa GrxD is crucial for bacterial virulence, maturation of [Fe-S] clusters and facilitation of Ohr enzyme activity. GrxD contains a conserved signature monothiol motif (C29GFS), in which C29 is essential for its function in an oxidative stress protection. Our findings reveal the physiological roles of GrxD in oxidative stress protection and virulence of P. aeruginosa.


Subject(s)
Glutaredoxins , Pseudomonas aeruginosa , Animals , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Virulence , Glutaredoxins/genetics , Glutaredoxins/metabolism , Drosophila melanogaster/metabolism , Oxidative Stress , Iron/metabolism
3.
Microbiol Res ; 251: 126816, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34273784

ABSTRACT

The Agrobacterium tumefaciens atu4217 gene, which encodes a TetR family transcription regulator, is a repressor of the atu4218-atu4219-atu4220 operon. The Atu4218 and Atu4219 proteins belong to the HlyD family (membrane fusion protein) and the AcrB/AcrD/AcrF family (inner membrane transporter), respectively, and may form an efflux pump. The atu4220 gene encodes a short-chain dehydrogenase. Quantitative real-time PCR analysis showed induction of atu4217 and atu4218 by NaOCl but not by N-ethylmaleimide or reactive oxygen species (ROS) including H2O2, menadione and cumene hydroperoxide; therefore, the atu4218 and atu4219 were named NaOCl-inducible efflux genes nieA and nieB, respectively. The atu4217 gene, which was named nieR, serves as a repressor of nieA and nieB. DNase I footprinting assays identified 20-bp imperfect inverted repeat (IR, underlined) motifs 5'-TAGATTTAGGATGCAATCTA-3' (box A) and 5'-TAGATTTCACTTGACATCTA-3' (box R) in the intergenic region of the divergent nieA and nieR genes; these motifs were recognized by the NieR protein. Electrophoretic mobility shift assays demonstrated that NieR specifically binds to the 20-bp IR motifs and that NaOCl prevents this NieR-DNA interaction. Promoter-lacZ fusions and mutagenesis of the NieR boxes (A and R) showed a more dominant role for box A than for box R in the repression of the nieA and nieR promoters. However, full repression of either promoter required both operators. The nieR mutant strain exhibited a small colony phenotype and was more sensitive than the wild-type to NaOCl and antibiotics, including ciprofloxacin, nalidixic acid, novobiocin, and tetracycline. By contrast, the nieAB mutant strain showed no phenotype changes under the tested conditions.


Subject(s)
Agrobacterium tumefaciens , Bacterial Proteins , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Hydrogen Peroxide/pharmacology , Operon
4.
Appl Environ Microbiol ; 86(20)2020 10 01.
Article in English | MEDLINE | ID: mdl-32801171

ABSTRACT

Reactive chlorine species (RCS), particularly hypochlorous acid (HOCl), are powerful antimicrobial oxidants generated by biological pathways and chemical syntheses. Pseudomonas aeruginosa is an important opportunistic pathogen that has adapted mechanisms for protection and survival in harsh environments, including RCS exposure. Based on previous transcriptomic studies of HOCl exposure in P. aeruginosa, we found that the expression of PA0565, or rcsA, which encodes an alkyl hydroperoxidase D-like protein, exhibited the highest induction among the RCS-induced genes. In this study, rcsA expression was dominant under HOCl stress and greatly increased under HOCl-related stress conditions. Functional analysis of RcsA showed that the distinguishing core amino acid residues Cys60, Cys63, and His67 were required for the degradation of sodium hypochlorite (NaOCl), suggesting an extended motif in the AhpD family. After allelic exchange mutagenesis in the P. aeruginosarcsA, the P. aeruginosarcsA deletion mutant showed significantly decreased HOCl resistance. Ectopic expression of P. aeruginosarcsA led to significantly increased NaOCl resistance in Escherichia coli Moreover, the pathogenicity of the rcsA mutant decreased dramatically in both Caenorhabditis elegans and Drosophila melanogaster host model systems compared to the wild type (WT). Finally, the Cys60, Cys63, and His67 variants of RcsA were unsuccessful at complementing phenotypes of the rcsA mutant. Overall, our data indicate the importance of P. aeruginosa RcsA in defense against HOCl stress under disinfections and during infections of hosts, which involves the catalytic Cys60, Cys63, and His67 residues.IMPORTANCEPseudomonas aeruginosa is a common pathogen that is a major cause of serious infections in many hosts. Hypochlorous acid (HOCl) is a potent antimicrobial agent found in household bleach and is a widely used disinfectant. P. aeruginosa has evolved adaptive mechanisms for protection and survival during HOCl exposure. We identified P. aeruginosarcsA as a HOCl-responsive gene encoding an antioxidant protein that may be involved in HOCl degradation. RcsA has a distinguishing core motif containing functional Cys60, Cys63, and His67 residues. P. aeruginosarcsA plays an important role in bleach tolerance, with expression of P. aeruginosarcsA in Escherichia coli also conferring HOCl resistance. Interestingly, RcsA is required for full virulence in worm and fruit fly infection models, indicating a correlation between mechanisms of bleach toxicity and host immunity during infection. This provides new insights into the mechanisms used by P. aeruginosa to persist in harsh environments such as hospitals.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Disinfectants/pharmacology , Hypochlorous Acid/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/pathogenicity , Bacterial Proteins/metabolism , Oxidants/pharmacology , Pseudomonas aeruginosa/drug effects , Virulence/drug effects
5.
PLoS One ; 14(6): e0218385, 2019.
Article in English | MEDLINE | ID: mdl-31251744

ABSTRACT

Iron-sulfur ([Fe-S]) cluster proteins have essential functions in many biological processes. [Fe-S] homeostasis is crucial for bacterial survival under a wide range of environmental conditions. IscR is a global transcriptional regulator in Pseudomonas aeruginosa; it has been shown to regulate genes involved in [Fe-S] cluster biosynthesis, iron homeostasis, resistance to oxidants, and pathogenicity. Many aspects of the IscR transcriptional regulatory mechanism differ from those of other well-studied systems. This study demonstrates the mechanisms of IscR Type-1 binding to its target sites that mediate the repression of gene expression at the isc operon, nfuA, and tpx. The analysis of IscR binding to multiple binding sites in the promoter region of the isc operon reveals that IscR first binds to the high-affinity site B followed by binding to the low-affinity site A. The results of in vitro IscR binding assays and in vivo analysis of IscR-mediated repression of gene expression support the role of site B as the primary site, while site A has only a minor role in the efficiency of IscR repression of gene expression. Ligation of an [Fe-S] cluster to IscR is required for the binding of IscR to target sites and in vivo repression and stress-induced gene expression. Analysis of Type-1 sites in many bacteria, including P. aeruginosa, indicates that the first and the last three AT-rich bases were among the most highly conserved bases within all analyzed Type-1 sites. Herein, we first propose the putative sequence of P. aeruginosa IscR Type-1 binding motif as 5'AWWSSYRMNNWWWTNNNWSGGNYWW3'. This can benefit further studies in the identification of novel genes under the IscR regulon and the regulatory mechanism model of P. aeruginosa IscR as it contributes to the roles of an [Fe-S] cluster in several biologically important cellular activities.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Iron-Sulfur Proteins/genetics , Pseudomonas aeruginosa/genetics , Transcription, Genetic , Base Sequence , Binding Sites , Iron-Sulfur Proteins/metabolism , Models, Biological , Mutation/genetics , Promoter Regions, Genetic , Protein Binding
6.
PLoS One ; 13(10): e0205815, 2018.
Article in English | MEDLINE | ID: mdl-30325949

ABSTRACT

Pseudomonas aeruginosa PAO1 contains gshA and gshB genes, which encode enzymes involved in glutathione (GSH) biosynthesis. Challenging P. aeruginosa with hydrogen peroxide, cumene hydroperoxide, and t-butyl hydroperoxide increased the expression of gshA and gshB. The physiological roles of these genes in P. aeruginosa oxidative stress, bacterial virulence, and biofilm formation were examined using P. aeruginosa ΔgshA, ΔgshB, and double ΔgshAΔgshB mutant strains. These mutants exhibited significantly increased susceptibility to methyl viologen, thiol-depleting agent, and methylglyoxal compared to PAO1. Expression of functional gshA, gshB or exogenous supplementation with GSH complemented these phenotypes, which indicates that the observed mutant phenotypes arose from their inability to produce GSH. Virulence assays using a Drosophila melanogaster model revealed that the ΔgshA, ΔgshB and double ΔgshAΔgshB mutants exhibited attenuated virulence phenotypes. An analysis of virulence factors, including pyocyanin, pyoverdine, and cell motility (swimming and twitching), showed that these levels were reduced in these gsh mutants compared to PAO1. In contrast, biofilm formation increased in mutants. These data indicate that the GSH product and the genes responsible for GSH synthesis play multiple crucial roles in oxidative stress protection, bacterial virulence and biofilm formation in P. aeruginosa.


Subject(s)
Bacterial Proteins/metabolism , Biofilms , Genes, Bacterial , Glutathione/biosynthesis , Pseudomonas aeruginosa/metabolism , Virulence , Animals , Bacterial Proteins/genetics , Cell Movement , Drosophila melanogaster/microbiology , Ethylmaleimide/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Mutation , Oligopeptides/genetics , Oligopeptides/metabolism , Oxidants/chemistry , Paraquat/pharmacology , Pseudomonas Infections , Pseudomonas aeruginosa/genetics , Pyocyanine/genetics , Pyocyanine/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
7.
PLoS One ; 13(8): e0202151, 2018.
Article in English | MEDLINE | ID: mdl-30092083

ABSTRACT

The role of the nfuA gene encoding an iron-sulfur ([Fe-S]) cluster-delivery protein in the pathogenic bacterium Pseudomonas aeruginosa was investigated. The analysis of nfuA expression under various stress conditions showed that superoxide generators, a thiol-depleting agent and CuCl2 highly induced nfuA expression. The expression of nfuA was regulated by a global [2Fe-2S] cluster containing the transcription regulator IscR. Increased expression of nfuA in the ΔiscR mutant under uninduced conditions suggests that IscR acts as a transcriptional repressor. In vitro experiments revealed that IscR directly bound to a sequence homologous to the Escherichia coli Type-I IscR-binding motifs on a putative nfuA promoter that overlapped the -35 element. Binding of IscR prevented RNA polymerase from binding to the nfuA promoter, leading to repression of the nfuA transcription. Physiologically, deletion of nfuA reduced the bacterial ability to cope with oxidative stress, iron deprivation conditions and attenuated virulence in the Caenorhabditis elegans infection model. Site-directed mutagenesis analysis revealed that the conserved CXXC motif of the Nfu-type scaffold protein domain at the N-terminus was required for the NfuA functions in conferring the stress resistance phenotype. Furthermore, anaerobic growth of the ΔnfuA mutant in the presence of nitrate was drastically retarded. This phenotype was associated with a reduction in the [Fe-S] cluster containing nitrate reductase enzyme activity. However, NfuA was not required for the maturation of [Fe-S]-containing proteins such as aconitase, succinate dehydrogenase, SoxR and IscR. Taken together, our results indicate that NfuA functions in [Fe-S] cluster delivery to selected target proteins that link to many physiological processes such as anaerobic growth, bacterial virulence and stress responses in P. aeruginosa.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Iron-Sulfur Proteins/physiology , Pseudomonas aeruginosa/physiology , Amino Acid Motifs , Bacterial Proteins/genetics , Cysteine/chemistry , Iron-Sulfur Proteins/genetics , Mutagenesis, Site-Directed , Oxidants/chemistry , Phenotype , Promoter Regions, Genetic , Pseudomonas aeruginosa/genetics , Reactive Oxygen Species/metabolism , Stress, Physiological , Transcription Factors/metabolism
8.
Sci Rep ; 8(1): 11882, 2018 08 08.
Article in English | MEDLINE | ID: mdl-30089777

ABSTRACT

During the translation process, transfer RNA (tRNA) carries amino acids to ribosomes for protein synthesis. Each codon of mRNA is recognized by a specific tRNA, and enzyme-catalysed modifications to tRNA regulate translation. TtcA is a unique tRNA-thiolating enzyme that requires an iron-sulfur ([Fe-S]) cluster to catalyse thiolation of tRNA. In this study, the physiological functions of a putative ttcA in Pseudomonas aeruginosa, an opportunistic human pathogen that causes serious problems in hospitals, were characterized. A P. aeruginosa ttcA-deleted mutant was constructed, and mutant cells were rendered hypersensitive to oxidative stress, such as hydrogen peroxide (H2O2) treatment. Catalase activity was lower in the ttcA mutant, suggesting that this gene plays a role in protecting against oxidative stress. Moreover, the ttcA mutant demonstrated attenuated virulence in a Drosophila melanogaster host model. Site-directed mutagenesis analysis revealed that the conserved cysteine motifs involved in [Fe-S] cluster ligation were required for TtcA function. Furthermore, ttcA expression increased upon H2O2 exposure, implying that enzyme levels are induced under stress conditions. Overall, the data suggest that P. aeruginosa ttcA plays a critical role in protecting against oxidative stress via catalase activity and is required for successful bacterial infection of the host.


Subject(s)
Bacterial Proteins/genetics , Genes, Bacterial/genetics , Hydrogen Peroxide/pharmacology , Iron-Sulfur Proteins/genetics , Oxidative Stress/genetics , Pseudomonas aeruginosa/genetics , RNA, Transfer/genetics , Amino Acid Sequence , Animals , Catalase/genetics , Drosophila melanogaster/microbiology , Oxidative Stress/drug effects , Virulence/genetics
9.
PLoS One ; 12(2): e0172071, 2017.
Article in English | MEDLINE | ID: mdl-28187184

ABSTRACT

Pseudomonas aeruginosa has two genes encoding ferredoxin NADP(+) reductases, denoted fprA and fprB. We show here that P. aeruginosa fprA is an essential gene. However, the ΔfprA mutant could only be successfully constructed in PAO1 strains containing an extra copy of fprA on a mini-Tn7 vector integrated into the chromosome or carrying it on a temperature-sensitive plasmid. The strain containing an extra copy of the ferredoxin gene (fdx1) could suppress the essentiality of FprA. Other ferredoxin genes could not suppress the requirement for FprA, suggesting that Fdx1 mediates the essentiality of FprA. The expression of fprA was highly induced in response to treatments with a superoxide generator, paraquat, or sodium hypochlorite (NaOCl). The induction of fprA by these treatments depended on FinR, a LysR-family transcription regulator. In vivo and in vitro analysis suggested that oxidized FinR acted as a transcriptional activator of fprA expression by binding to its regulatory box, located 20 bases upstream of the fprA -35 promoter motif. This location of the FinR box also placed it between the -35 and -10 motifs of the finR promoter, where the reduced regulator functions as a repressor. Under uninduced conditions, binding of FinR repressed its own transcription but had no effect on fprA expression. Exposure to paraquat or NaOCl converted FinR to a transcriptional activator, leading to the expression of both fprA and finR. The ΔfinR mutant showed an increased paraquat sensitivity phenotype and attenuated virulence in the Drosophila melanogaster host model. These phenotypes could be complemented by high expression of fprA, indicating that the observed phenotypes of the ΔfinR mutant arose from the inability to up-regulate fprA expression. In addition, increased expression of fprB was unable to rescue essentiality of fprA or the superoxide-sensitive phenotype of the ΔfinR mutant, suggesting distinct mechanisms of the FprA and FprB enzymes.


Subject(s)
Bacterial Proteins/genetics , Ferredoxin-NADP Reductase/genetics , Gene Expression Regulation, Bacterial , Oxidative Stress , Pseudomonas aeruginosa/genetics , Animals , Bacterial Proteins/metabolism , Drosophila/microbiology , Ferredoxin-NADP Reductase/metabolism , Ferredoxins/genetics , Ferredoxins/metabolism , Phenotype , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Superoxides/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence/genetics
10.
PLoS One ; 10(7): e0134374, 2015.
Article in English | MEDLINE | ID: mdl-26230408

ABSTRACT

P. aeruginosa (PAO1) has two putative genes encoding ferredoxin NADP(+) reductases, denoted fprA and fprB. Here, the regulation of fprB expression and the protein's physiological roles in [4Fe-4S] cluster biogenesis and stress protection are characterized. The fprB mutant has defects in [4Fe-4S] cluster biogenesis, as shown by reduced activities of [4Fe-4S] cluster-containing enzymes. Inactivation of the gene resulted in increased sensitivity to oxidative, thiol, osmotic and metal stresses compared with the PAO1 wild type. The increased sensitivity could be partially or completely suppressed by high expression of genes from the isc operon, which are involved in [Fe-S] cluster biogenesis, indicating that stress sensitivity in the fprB mutant is partially caused by a reduction in levels of [4Fe-4S] clusters. The pattern and regulation of fprB expression are in agreement with the gene physiological roles; fprB expression was highly induced by redox cycling drugs and diamide and was moderately induced by peroxides, an iron chelator and salt stress. The stress-induced expression of fprB was abolished by a deletion of the iscR gene. An IscR DNA-binding site close to fprB promoter elements was identified and confirmed by specific binding of purified IscR. Analysis of the regulation of fprB expression supports the role of IscR in directly regulating fprB transcription as a transcription activator. The combination of IscR-regulated expression of fprB and the fprB roles in response to multiple stressors emphasizes the importance of [Fe-S] cluster homeostasis in both gene regulation and stress protection.


Subject(s)
Bacterial Proteins/genetics , Ferredoxin-NADP Reductase/genetics , Iron-Sulfur Proteins/genetics , Oxidative Stress , Pseudomonas aeruginosa/metabolism , Amino Acid Sequence , Bacterial Proteins/physiology , Ferredoxin-NADP Reductase/chemistry , Gene Expression Profiling , Iron-Sulfur Proteins/physiology , Molecular Sequence Data , Promoter Regions, Genetic , Sequence Homology, Amino Acid , Transcription, Genetic
11.
Microbiol Res ; 170: 139-46, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25200360

ABSTRACT

Iron-sulfur ([Fe-S]) cluster is an essential cofactor of proteins involved in various physiological processes including cellular defense against oxidative stress. In Xanthomonas campestris pv. campestris (Xcc), IscR plays a negative role in regulation of the transcription of [Fe-S] assembly genes, iscR-sufBCDS. The expression level of sufBCDS was up-regulated in an Xcc iscR mutant. In addition, the iscR promoter activity in an Xcc iscR mutant was also higher than the wild-type strain, indicating an autoregulatory circuit. Purified IscR was shown to bind at the iscR promoter region and three putative IscR binding sites were identified. The expression of iscR-suf operon was highly induced by oxidant treatments and iron limited conditions. The iscR mutant showed increased sensitivity toward hydrogen peroxide phenotype but, surprisingly, had hyper-resistant phenotype toward plumbagin compared to the wild-type strain. Most importantly, the iscR mutant was impaired in its ability to cause lesion on leaves of a compatible host plant, Chinese radish (Raphanus sativus). These results demonstrate that a transcription regulator gene, iscR, negatively regulates genes involved in [Fe-S] biosynthesis and plays a role in oxidative stress response and pathogenesis of Xcc.


Subject(s)
Oxidative Stress/genetics , Transcription Factors/genetics , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism , Amino Acid Sequence , Gene Expression Regulation, Bacterial , Gene Order , Molecular Sequence Data , Mutation , Operon , Phenotype , Plant Diseases/microbiology , Promoter Regions, Genetic , Sequence Alignment , Transcription Factors/chemistry , Transcription Factors/metabolism , Virulence/genetics , Xanthomonas campestris/pathogenicity
12.
PLoS One ; 9(1): e86763, 2014.
Article in English | MEDLINE | ID: mdl-24466226

ABSTRACT

IscR is a global transcription regulator responsible for governing various physiological processes during growth and stress responses. The IscR-mediated regulation of the Pseudomonas aeruginosa isc operon, which is involved in iron-sulphur cluster ([Fe-S]) biogenesis, was analysed. The expression of iscR was highly induced through the exposure of the bacteria to various oxidants, such as peroxides, redox-cycling drugs, intracellular iron-chelating agents, and high salts. Two putative type 1 IscR-binding sites were found around RNA polymerase recognition sites, in which IscR-promoter binding could preclude RNA polymerase from binding to the promoter and resulting in repression of the isc operon expression. An analysis of the phenotypes of mutants and cells with altered gene expression revealed the diverse physiological roles of this regulator. High-level IscR strongly inhibited anaerobic, but not aerobic, growth. iscR contributes significantly to the bacteria overall resistance to oxidative stress, as demonstrated through mutants with increased sensitivity to oxidants, such as peroxides and redox-cycling drugs. Moreover, the regulator also plays important roles in modulating intracellular iron homeostasis, potentially through sensing the levels of [Fe-S]. The increased expression of the isc operon in the mutant not only diverts iron away from the available pool but also reduces the total intracellular iron content, affecting many iron metabolism pathways leading to alterations in siderophores and haem levels. The diverse expression patterns and phenotypic changes of the mutant support the role of P. aeruginosa IscR as a global transcriptional regulator that senses [Fe-S] and directly represses or activates the transcription of genes affecting many physiological pathways.


Subject(s)
Gene Expression Regulation, Bacterial/genetics , Iron-Sulfur Proteins/metabolism , Pseudomonas aeruginosa/genetics , Transcription Factors/genetics , Amino Acid Sequence , Base Sequence , Gene Components , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Iron/metabolism , Iron Chelating Agents/pharmacology , Iron-Sulfur Proteins/biosynthesis , Oxidative Stress/physiology , Peroxides/pharmacology , Promoter Regions, Genetic/genetics , Pseudomonas aeruginosa/physiology , Sequence Alignment , Sequence Analysis, DNA
13.
J Bacteriol ; 194(15): 3904-12, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22609922

ABSTRACT

The Pseudomonas aeruginosa PAO1 thiol peroxidase homolog (Tpx) belongs to a family of enzymes implicated in the removal of toxic peroxides. We have shown the expression of tpx to be highly inducible with redox cycling/superoxide generators and diamide and weakly inducible with organic hydroperoxides and hydrogen peroxide (H(2)O(2)). The PAO1 tpx pattern is unlike the patterns for other peroxide-scavenging genes in P. aeruginosa. Analysis of the tpx promoter reveals the presence of a putative IscR binding site located near the promoter. The tpx expression profiles in PAO1 and the iscR mutant, together with results from gel mobility shift assays showing that purified IscR specifically binds the tpx promoter, support the role of IscR as a transcriptional repressor of tpx that also regulates the oxidant-inducible expression of the gene. Recombinant Tpx has been purified and biochemically characterized. The enzyme catalyzes thioredoxin-dependent peroxidation and can utilize organic hydroperoxides and H(2)O(2) as substrates. The Δtpx mutant demonstrates differential sensitivity to H(2)O(2) only at moderate concentrations (0.5 mM) and not at high (20 mM) concentrations, suggesting a novel protective role of tpx against H(2)O(2) in P. aeruginosa. Altogether, P. aeruginosa tpx is a novel member of the IscR regulon and plays a primary role in protecting the bacteria from submillimolar concentrations of H(2)O(2).


Subject(s)
Gene Expression Regulation, Bacterial , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , Peroxidase/metabolism , Pseudomonas aeruginosa/enzymology , Repressor Proteins/metabolism , Sulfhydryl Compounds/metabolism , Binding Sites , DNA, Bacterial/metabolism , Electrophoretic Mobility Shift Assay , Gene Deletion , Gene Expression Profiling , Peroxidase/genetics , Peroxidase/isolation & purification , Promoter Regions, Genetic , Protein Binding , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Regulon
14.
Curr Microbiol ; 63(2): 232-7, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21710133

ABSTRACT

Xanthomonas campestris pv. campestris causes black rot in cruciferous crops. Hydrogen peroxide (H(2)O(2)) production and accumulation is an important initial response in plant defense against invading microbes. The role of genes involved in the bacterial H(2)O(2) protection system in pathogenicity was evaluated. Mutants of katA (encoding a monofunctional catalase) and, to a lesser extent, katG (encoding a catalase-peroxidase) and oxyR (encoding a H(2)O(2) sensor and a transcription regulator), are hypersensitive to H(2)O(2) treatments that mimic the plant H(2)O(2) burst. These data correlate with the results of pathogenicity testing that show katA, katG, and oxyR mutants are avirulent on a compatible plant. Moreover, exposure to H(2)O(2) (1, 2, and 4 mM) highly induces the expression of genes in the OxyR regulon, including katA, katG, and ahpC. The avirulent phenotype of the oxyR mutant is partly because of its inability to mount an adaptive response upon exposure to an H(2)O(2) burst. Our data provide insights into important roles of a transcription regulator and other genes involved in peroxide stress protection in the virulence of X. campestris pv. campestris.


Subject(s)
Hydrogen Peroxide/toxicity , Oxidative Stress , Plant Diseases/microbiology , Regulon , Xanthomonas campestris/pathogenicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalase/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Peroxidase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence , Xanthomonas campestris/drug effects , Xanthomonas campestris/genetics , Xanthomonas campestris/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...