Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
bioRxiv ; 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37131688

ABSTRACT

Background: Neoadjuvant chemotherapy (NAC) is the standard treatment for early-stage triple negative breast cancer (TNBC). The primary endpoint of NAC is a pathological complete response (pCR). NAC results in pCR in only 30%â€"40% of TNBC patients. Tumor-infiltrating lymphocytes (TILs), Ki67 and phosphohistone H3 (pH3) are a few known biomarkers to predict NAC response. Currently, systematic evaluation of the combined value of these biomarkers in predicting NAC response is lacking. In this study, the predictive value of markers derived from H&E and IHC stained biopsy tissue was comprehensively evaluated using a supervised machine learning (ML)-based approach. Identifying predictive biomarkers could help guide therapeutic decisions by enabling precise stratification of TNBC patients into responders and partial or non-responders. Methods: Serial sections from core needle biopsies (n=76) were stained with H&E, and immunohistochemically for the Ki67 and pH3 markers, followed by whole slide image (WSI) generation. The resulting WSI triplets were co-registered with H&E WSIs serving as the reference. Separate mask region-based CNN (MRCNN) models were trained with annotated H&E, Ki67 and pH3 images for detecting tumor cells, stromal and intratumoral TILs (sTILs and tTILs), Ki67 + , and pH3 + cells. Top image patches with a high density of cells of interest were identified as hotspots. Best classifiers for NAC response prediction were identified by training multiple ML models, and evaluating their performance by accuracy, area under curve, and confusion matrix analyses. Results: Highest prediction accuracy was achieved when hotspot regions were identified by tTIL counts and each hotspot was represented by measures of tTILs, sTILs, tumor cells, Ki67 + , and pH3 + features. Regardless of the hotspot selection metric, a complementary use of multiple histological features (tTILs, sTILs) and molecular biomarkers (Ki67 and pH3) resulted in top ranked performance at the patient level. Conclusions: Overall, our results emphasize that prediction models for NAC response should be based on biomarkers in combination rather than in isolation. Our study provides compelling evidence to support the use of ML-based models to predict NAC response in patients with TNBC.

2.
Biomed Eng Online ; 21(1): 77, 2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36242040

ABSTRACT

OBJECTIVES: To use deep learning of serial portable chest X-ray (pCXR) and clinical variables to predict mortality and duration on invasive mechanical ventilation (IMV) for Coronavirus disease 2019 (COVID-19) patients. METHODS: This is a retrospective study. Serial pCXR and serial clinical variables were analyzed for data from day 1, day 5, day 1-3, day 3-5, or day 1-5 on IMV (110 IMV survivors and 76 IMV non-survivors). The outcome variables were duration on IMV and mortality. With fivefold cross-validation, the performance of the proposed deep learning system was evaluated by receiver operating characteristic (ROC) analysis and correlation analysis. RESULTS: Predictive models using 5-consecutive-day data outperformed those using 3-consecutive-day and 1-day data. Prediction using data closer to the outcome was generally better (i.e., day 5 data performed better than day 1 data, and day 3-5 data performed better than day 1-3 data). Prediction performance was generally better for the combined pCXR and non-imaging clinical data than either alone. The combined pCXR and non-imaging data of 5 consecutive days predicted mortality with an accuracy of 85 ± 3.5% (95% confidence interval (CI)) and an area under the curve (AUC) of 0.87 ± 0.05 (95% CI) and predicted the duration needed to be on IMV to within 2.56 ± 0.21 (95% CI) days on the validation dataset. CONCLUSIONS: Deep learning of longitudinal pCXR and clinical data have the potential to accurately predict mortality and duration on IMV in COVID-19 patients. Longitudinal pCXR could have prognostic value if these findings can be validated in a large, multi-institutional cohort.


Subject(s)
COVID-19 , Deep Learning , Respiration Disorders , COVID-19/diagnostic imaging , COVID-19/therapy , Humans , Retrospective Studies , Ventilators, Mechanical , X-Rays
3.
Bioinformatics ; 38(19): 4605-4612, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35962988

ABSTRACT

MOTIVATION: Predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in triple-negative breast cancer (TNBC) patients accurately is direly needed for clinical decision making. pCR is also regarded as a strong predictor of overall survival. In this work, we propose a deep learning system to predict pCR to NAC based on serial pathology images stained with hematoxylin and eosin and two immunohistochemical biomarkers (Ki67 and PHH3). To support human prior domain knowledge-based guidance and enhance interpretability of the deep learning system, we introduce a human knowledge-derived spatial attention mechanism to inform deep learning models of informative tissue areas of interest. For each patient, three serial breast tumor tissue sections from biopsy blocks were sectioned, stained in three different stains and integrated. The resulting comprehensive attention information from the image triplets is used to guide our prediction system for prognostic tissue regions. RESULTS: The experimental dataset consists of 26 419 pathology image patches of 1000×1000 pixels from 73 TNBC patients treated with NAC. Image patches from randomly selected 43 patients are used as a training dataset and images patches from the rest 30 are used as a testing dataset. By the maximum voting from patch-level results, our proposed model achieves a 93% patient-level accuracy, outperforming baselines and other state-of-the-art systems, suggesting its high potential for clinical decision making. AVAILABILITY AND IMPLEMENTATION: The codes, the documentation and example data are available on an open source at: https://github.com/jkonglab/PCR_Prediction_Serial_WSIs_biomarkers. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Breast Neoplasms , Deep Learning , Triple Negative Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/diagnostic imaging , Neoadjuvant Therapy
4.
Bioinformatics ; 37(21): 3905-3913, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34081103

ABSTRACT

MOTIVATION: In most tissue-based biomedical research, the lack of sufficient pathology training images with well-annotated ground truth inevitably limits the performance of deep learning systems. In this study, we propose a convolutional neural network with foveal blur enriching datasets with multiple local nuclei regions of interest derived from original pathology images. We further propose a human-knowledge boosted deep learning system by inclusion to the convolutional neural network new loss function terms capturing shape prior knowledge and imposing smoothness constraints on the predicted probability maps. RESULTS: Our proposed system outperforms all state-of-the-art deep learning and non-deep learning methods by Jaccard coefficient, Dice coefficient, Accuracy and Panoptic Quality in three independent datasets. The high segmentation accuracy and execution speed suggest its promising potential for automating histopathology nuclei segmentation in biomedical research and clinical settings. AVAILABILITY AND IMPLEMENTATION: The codes, the documentation and example data are available on an open source at: https://github.com/HongyiDuanmu26/FovealBoosted. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Humans , Image Processing, Computer-Assisted/methods
5.
Article in English | MEDLINE | ID: mdl-36222817

ABSTRACT

In triple negative breast cancer (TNBC) treatment, early prediction of pathological complete response (PCR) from chemotherapy before surgical operations is crucial for optimal treatment planning. We propose a novel deep learning-based system to predict PCR to neoadjuvant chemotherapy for TNBC patients with multi-stained histopathology images of serial tissue sections. By first performing tumor cell detection and recognition in a cell detection module, we produce a set of feature maps that capture cell type, shape, and location information. Next, a newly designed spatial attention module integrates such feature maps with original pathology images in multiple stains for enhanced PCR prediction in a dedicated prediction module. We compare it with baseline models that either use a single-stained slide or have no spatial attention module in place. Our proposed system yields 78.3% and 87.5% of accuracy for patch-, and patient-level PCR prediction, respectively, outperforming all other baseline models. Additionally, the heatmaps generated from the spatial attention module can help pathologists in targeting tissue regions important for disease assessment. Our system presents high efficiency and effectiveness and improves interpretability, making it highly promising for immediate clinical and translational impact.

6.
J Med Internet Res ; 22(11): e15293, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33245287

ABSTRACT

BACKGROUND: In recent years, both suicide and overdose rates have been increasing. Many individuals who struggle with opioid use disorder are prone to suicidal ideation; this may often result in overdose. However, these fatal overdoses are difficult to classify as intentional or unintentional. Intentional overdose is difficult to detect, partially due to the lack of predictors and social stigmas that push individuals away from seeking help. These individuals may instead use web-based means to articulate their concerns. OBJECTIVE: This study aimed to extract posts of suicidality among opioid users on Reddit using machine learning methods. The performance of the models is derivative of the data purity, and the results will help us to better understand the rationale of these users, providing new insights into individuals who are part of the opioid epidemic. METHODS: Reddit posts between June 2017 and June 2018 were collected from r/suicidewatch, r/depression, a set of opioid-related subreddits, and a control subreddit set. We first classified suicidal versus nonsuicidal languages and then classified users with opioid usage versus those without opioid usage. Several traditional baselines and neural network (NN) text classifiers were trained using subreddit names as the labels and combinations of semantic inputs. We then attempted to extract out-of-sample data belonging to the intersection of suicide ideation and opioid abuse. Amazon Mechanical Turk was used to provide labels for the out-of-sample data. RESULTS: Classification results were at least 90% across all models for at least one combination of input; the best classifier was convolutional neural network, which obtained an F1 score of 96.6%. When predicting out-of-sample data for posts containing both suicidal ideation and signs of opioid addiction, NN classifiers produced more false positives and traditional methods produced more false negatives, which is less desirable for predicting suicidal sentiments. CONCLUSIONS: Opioid abuse is linked to the risk of unintentional overdose and suicide risk. Social media platforms such as Reddit contain metadata that can aid machine learning and provide information at a personal level that cannot be obtained elsewhere. We demonstrate that it is possible to use NNs as a tool to predict an out-of-sample target with a model built from data sets labeled by characteristics we wish to distinguish in the out-of-sample target.


Subject(s)
Internet Use/trends , Machine Learning/standards , Opioid-Related Disorders/complications , Social Media/standards , Suicide/psychology , Female , Humans , Male , Natural Language Processing , Opioid-Related Disorders/psychology
7.
Proc IEEE Int Symp Biomed Imaging ; 2020: 758-762, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32802270

ABSTRACT

3D organ contouring is an essential step in radiation therapy treatment planning for organ dose estimation as well as for optimizing plans to reduce organs-at-risk doses. Manual contouring is time-consuming and its inter-clinician variability adversely affects the outcomes study. Such organs also vary dramatically on sizes - up to two orders of magnitude difference in volumes. In this paper, we present BrainSegNet, a novel 3D fully convolutional neural network (FCNN) based approach for automatic segmentation of brain organs. BrainSegNet takes a multiple resolution paths approach and uses a weighted loss function to solve the major challenge of the large variability in organ sizes. We evaluated our approach with a dataset of 46 Brain CT image volumes with corresponding expert organ contours as reference. Compared with those of LiviaNet and V-Net, BrainSegNet has a superior performance in segmenting tiny or thin organs, such as chiasm, optic nerves, and cochlea, and outperforms these methods in segmenting large organs as well. BrainSegNet can reduce the manual contouring time of a volume from an hour to less than two minutes, and holds high potential to improve the efficiency of radiation therapy workflow.

8.
Clin Breast Cancer ; 20(3): e301-e308, 2020 06.
Article in English | MEDLINE | ID: mdl-32139272

ABSTRACT

BACKGROUND: Axillary lymph node status is important for breast cancer staging and treatment planning as the majority of breast cancer metastasis spreads through the axillary lymph nodes. There is currently no reliable noninvasive imaging method to detect nodal metastasis associated with breast cancer. MATERIALS AND METHODS: Magnetic resonance imaging (MRI) data were those from the peak contrast dynamic image from 1.5 Tesla MRI scanners at the pre-neoadjuvant chemotherapy stage. Data consisted of 66 abnormal nodes from 38 patients and 193 normal nodes from 61 patients. Abnormal nodes were those determined by expert radiologist based on 18Fluorodeoxyglucose positron emission tomography images. Normal nodes were those with negative diagnosis of breast cancer. The convolutional neural network consisted of 5 convolutional layers with filters from 16 to 128. Receiver operating characteristic analysis was performed to evaluate prediction performance. For comparison, an expert radiologist also scored the same nodes as normal or abnormal. RESULTS: The convolutional neural network model yielded a specificity of 79.3% ± 5.1%, sensitivity of 92.1% ± 2.9%, positive predictive value of 76.9% ± 4.0%, negative predictive value of 93.3% ± 1.9%, accuracy of 84.8% ± 2.4%, and receiver operating characteristic area under the curve of 0.91 ± 0.02 for the validation data set. These results compared favorably with scoring by radiologists (accuracy of 78%). CONCLUSION: The results are encouraging and suggest that this approach may prove useful for classifying lymph node status on MRI in clinical settings in patients with breast cancer, although additional studies are needed before routine clinical use can be realized. This approach has the potential to ultimately be a noninvasive alternative to lymph node biopsy.


Subject(s)
Breast Neoplasms/pathology , Image Processing, Computer-Assisted/methods , Lymphatic Metastasis/diagnosis , Magnetic Resonance Imaging , Neural Networks, Computer , Anatomic Landmarks , Axilla , Breast Neoplasms/diagnosis , Datasets as Topic , Feasibility Studies , Female , Fluorodeoxyglucose F18/administration & dosage , Humans , Positron-Emission Tomography , ROC Curve , Radiopharmaceuticals/administration & dosage , Reproducibility of Results , Sentinel Lymph Node/diagnostic imaging , Sentinel Lymph Node/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...