Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Organometallics ; 43(4): 585-593, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425382

ABSTRACT

Ketenyl anions are versatile intermediates in synthetic chemistry and have recently become accessible as isolable reagents from metalated ylides by exchange of the phosphine with CO. Herein, we report on a systematic study of substituent effects on the structure and bonding situation in ketenyl anions. A series of phosphinoyl-substituted ketenyl anions {[R2P(X)CCO]- with X = O, NTol, S, Se} were prepared by carbonylation of the corresponding yldiides and isolated as their corresponding potassium salts. NMR and IR spectroscopic analyses together with computational studies demonstrate that the more electron-withdrawing oxo- and iminophosphinoyl substituents increase the s-character in the bond to the ketene moiety and hence the ynolate character of the anion. This trend is particularly seen in solution, whereas the solid-state properties are influenced by packing effects affecting the bonding situation.

2.
Chemistry ; 30(4): e202302720, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37888749

ABSTRACT

The impact of kinetic lability or reactivity on in vitro cytotoxicity, stability in plasma, in vivo tumor and tissue accumulation, and antitumor efficacy of functional platinum(II) (Pt) anticancer agents containing a O˄O ß-diketonate leaving ligand remain largely unexplored. To investigate this, we synthesized Pt complexes [(NH3 )2 Pt(L1-H)]NO3 and [(DACH)Pt(L1-H)]NO3 (L1=4,4,4-trifluoro-1-ferrocenylbutane-1,3-dione, DACH=1R,2R-cyclohexane-1,2-diamine) containing an electron deficient [L1-H]- O˄O leaving ligand and [(NH3 )2 Pt(L2-H)]NO3 and [(DACH)Pt(L2-H)]NO3 (L2=1-ferrocenylbutane-1,3-dione) containing an electron-rich [L2-H]- O˄O leaving ligand. While all four complexes have comparable lipophilicity, the presence of the electron-withdrawing CF3 group was found to dramatically enhance the reactivity of these complexes toward nucleophilic biomolecules. In vitro cellular assays revealed that the more reactive complexes have higher cellular uptake and higher anticancer potency as compared to their less reactive analogs. But the scenario is opposite in vivo, where the less reactive complex showed improved tissue and tumor accumulation and better anticancer efficacy in mice bearing ovarian xenograft when compared to its more reactive analog. Finally, in addition to demonstrating the profound but contrasting impact of kinetic lability on in vitro and in vivo antitumor potencies, we also described the impact of kinetic lability on the mechanism of action of this class of promising antitumor agents.


Subject(s)
Antineoplastic Agents , Cyclohexylamines , Neoplasms , Radiation-Sensitizing Agents , Humans , Animals , Mice , Platinum , Ligands , Organoplatinum Compounds/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy
3.
Angew Chem Int Ed Engl ; 62(38): e202303958, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37314332

ABSTRACT

Even in the modern era of precision medicine and immunotherapy, chemotherapy with platinum (Pt) drugs remains among the most commonly prescribed medications against a variety of cancers. Unfortunately, the broad applicability of these blockbuster Pt drugs is severely limited by intrinsic and/or acquired resistance, and high systemic toxicity. Considering the strong interconnection between kinetic lability and undesired shortcomings of clinical Pt drugs, we rationally designed kinetically inert organometallic Pt based anticancer agents with a novel mechanism of action. Using a combination of in vitro and in vivo assays, we demonstrated that the development of a remarkably efficacious but kinetically inert Pt anticancer agent is feasible. Along with exerting promising antitumor efficacy in Pt-sensitive as well as Pt-resistant tumors in vivo, our best candidate has the ability to mitigate the nephrotoxicity issue associated with cisplatin. In addition to demonstrating, for the first time, the power of kinetic inertness in improving the therapeutic benefits of Pt based anticancer therapy, we describe the detailed mechanism of action of our best kinetically inert antitumor agent. This study will certainly pave the way for designing the next generation of anticancer drugs for effective treatment of various cancers.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Platinum/pharmacology , Platinum/therapeutic use , Cisplatin/pharmacology , Cisplatin/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Kinetics , Cell Line, Tumor
4.
Chem Sci ; 14(14): 3816-3825, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37035690

ABSTRACT

Control of the metal ligand interaction by changes in the ligand protonation state is vital to many catalytic transformations based on metal-ligand cooperativity. Herein, we report on the coordination chemistry of a new PCy(H)N pincer ligand with a central ylide as donor site, which through deprotonation to the corresponding yldiide changes from a neutral L3-type ligand to an anionic L2X-type PCYN ligand. The isolation of a series of rhodium complexes showed that the strong donor ability of the neutral ylide PCY(H)N is further increased upon deprotonation, as evidenced by one of the lowest reported CO stretching frequencies in complex [(PCYN)Rh(CO)] (2) compared to other known rhodium carbonyl complexes. DFT calculations revealed that the high donor ability mostly results from the antibonding interaction of the pπ orbital at the ylide with the d xz orbital at rhodium, which enhances the backdonation into the π* orbital of the CO ligand. This unique interaction results in a rather long metal-carbon bond, but still a strong activation of the CO ligand in order to minimize repulsion between the filled orbitals at the rhodium and the ylide ligand. Accordingly, CO by phosphine replacement leads to a strong deviation from the square-planar geometry in the analogous phosphine complexes [(PCYN)Rh(PR3)] and an unusual reactivity with small alkyl halides, which upon oxidative addition add to the CO ligand, before inserting into the P-C bond in the pincer ligand. These results demonstrate the unique donor strength of yldiide ligands and their potential in the activation of strong bonds.

5.
Angew Chem Int Ed Engl ; 61(30): e202203950, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35644923

ABSTRACT

Although ylides are commonly used reagents in organic synthesis, the parent methylphosphine MePH2 only exists in its phosphine form in the condensed phase. Its ylide tautomer H3 P+ -CH2 - is considerably higher in energy. Here, we report on the formation of bis(sulfonyl)methyl-substituted phosphines of the type (RO2 S)2 C(H)-PR2, which form stable PH ylides under ambient conditions, amongst the first examples of an acyclic phosphine which only exists in its PH ylide form. Depending on the exact substitution pattern the phosphines form an equilibrium between the PH ylide and the phosphine form or exist as one of both extremes. These phosphines were found to be ideal starting systems for the facile formation of α-carbanionic phosphines. The carbanion-functionalization leads to a switch from electron-poor to highly electron-rich phosphines with strong donor abilities and high basicities. Thus, the phosphines readily react with different electrophiles exclusively at the phosphorus atom and not at the carbanionic center. Furthermore, the anionic nature of the phosphines allows the formation of zwitterionic complexes as demonstrated by the isolation of a gold(I) complex with a cationic metal center. The cationic gold center allows for catalytic activity in the hydroamination of alkyne without requiring a further activation step.

6.
Chemistry ; 28(46): e202201259, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35638709

ABSTRACT

Despite phenomenal clinical success, the efficacy of platinum anticancer drugs is often compromised due to inherent and acquired drug resistant phenotypes in cancers. To circumvent this issue, we designed two heterobimetallic platinum (II)-ferrocene hybrids that display multi-pronged anticancer action. In cancer cells, our best compound, 2, platinates DNA, produces reactive oxygen species, and has nucleus, mitochondria, and endoplasmic reticulum as potential targets. The multi-modal mechanism of action of these hybrid agents lead to non-apoptotic cell death induction which enables circumventing apoptosis resistance and significant improvement in platinum cross resistance profile. Finally, in addition to describing detail mechanistic insights, we also assessed its stability in plasma and demonstrate anticancer efficacy in an in vivo A2780 xenograft model. Strikingly, compared to oxaliplatin, our compound displays better tolerability, safety profile and efficacy in vivo.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Line, Tumor , Cisplatin/pharmacology , Female , Humans , Metallocenes , Organoplatinum Compounds/pharmacology , Platinum
7.
Angew Chem Int Ed Engl ; 59(17): 6729-6734, 2020 Apr 20.
Article in English | MEDLINE | ID: mdl-31960562

ABSTRACT

Diradicals have been of tremendous interest for over a century ever since the first reports of p- and m-phenylene-bridged diphenylmethylradicals in 1904 by Thiele and 1915 by Schlenk. Reported here are the first examples of cyclic(alkyl)(amino)carbene (CAAC) analogues of Thiele's hydrocarbon, a Kekulé diradical, and Schlenk's hydrocarbon, a non-Kekulé diradical, without using CAAC as a precursor. The CAAC analogue of Thiele's hydrocarbon has a singlet ground state, whereas the CAAC analogue of Schlenk's hydrocarbon contains two unpaired electrons. The latter forms a dimer, by an intermolecular double head-to-tail dimerization. This straightforward synthetic methodology is modular and can be extended for the generation of redox-active organic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...