Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 16(23): 3663-3674, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38804266

ABSTRACT

The present study describes an efficient method for the determination of polyphenol content in beverages based on a composite material of graphene oxide decorated with Prussian blue nanocubes (rGO/PBNCs). In this method, rGO/PBNCs act as a nanoenzyme with peroxidase-like catalytic activity and produce a colorimetric product in the presence of hydrogen peroxide and tetramethylbenzidine (TMB). To verify the effectiveness of the method, we used two model standards for antioxidants: gallic acid (GA) and tannic acid (TA). The method validation included a comparison of the performance of a natural enzyme and an artificial one (rGO/PBNCs) and two polyphenols in the analysis of commercial beverage samples. After optimization, a pH of 4, ambient temperature (22 °C), a reaction time of 2 minutes and an rGO/PBNCs concentration of 0.01 µg mL-1 were found to be the most favorable conditions. The detection limits obtained were 5.6 µmol L-1 for GA and 1.5 µmol L-1 for TA. Overall, rGO/PBNCs offer advantages over natural enzymes in terms of stability, versatility, scalability and durability, making them attractive candidates for a wide range of catalytic and sensory applications.


Subject(s)
Beverages , Ferrocyanides , Graphite , Polyphenols , Polyphenols/analysis , Polyphenols/chemistry , Ferrocyanides/chemistry , Graphite/chemistry , Beverages/analysis , Colorimetry/methods , Limit of Detection , Peroxidase/chemistry , Gallic Acid/chemistry , Gallic Acid/analysis , Tannins/chemistry , Tannins/analysis , Hydrogen Peroxide/chemistry , Benzidines/chemistry , Antioxidants/chemistry , Antioxidants/analysis
2.
Anal Chim Acta ; 1202: 339654, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35341526

ABSTRACT

Three sets of Carbon Dots (Cdots) were produced through the carbohydrates acid thermal decomposition method. These nanoparticles were functionalized with a polymer, known for its biological compatibility: polyethylene glycol, PEG200, and folic acid, FA, a biomolecule associated with the reactive oxygen and nitrogen (ROS/RNS) savaging process, thus resulting CdotsPEG200, CdotsPEG200FA and CdotsFA. These nanoparticles were tested as nitric oxide radical (NO·) sensors and it was determined that CdotsPEG200FA and CdotsFA fluorescence intensity was quenched by the presence of this radical specie. Moreover, according to the Benesi-Hilderbrand plot, the nanoparticles have a high affinity towards the analyte and this interaction is consistent with a 1:1 stoichiometry, through an independent mechanism. The Stern-Volmer constant, obtained for both sensing systems, is compatible with the formation of stable complexes (static quenching) between the Folic Acid residues on the Cdots surface and NO·. The detection and quantification limits along with the sensitivity were calculated for both nanoparticles: DL (31.7 ± 0.02) x 10-9, QL (96.29 ± 0.01) x 10-9, Sensitivity (5.2 ± 0.5) x 109 M for CdotsFA and DL (83 ± 3) x 10-10, QL (251 ± 2) x 10-10, Sensitivity (8.4 ± 0.3) x 1010 M. These values are adequate for biological sensing and are quite competitive with other reported nanosensors for NO· detection and quantification.


Subject(s)
Carbon , Nanoparticles , Carbon/chemistry , Folic Acid , Nanoparticles/chemistry , Oxygen/chemistry , Reactive Nitrogen Species
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120380, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34562863

ABSTRACT

The pressing need to develop a specific analytical sensor that can identify and quantify Fe(II) without a cytotoxic response was the major motivation drive in this work. The turn-on fluorescent sensor here described can successfully detect Fe(II) and discriminate this ion from other analytes that commonly act as interferents in biological media. Moreover, this reduced fluoresceinamine-based sensor has a high photostability and high dissociation constant, which is an indication that the complex obtained between reduced fluoresceinamine (RFL) and Fe(II) is highly stable. This fluorescence-based sensor has a binding mechanism of 1:1 and a positive cooperativity was found between analyte and sensor. The detection, quantification and sensitivity parameters of the sensor were determined: 21.6 ± 0.1 µM; 65.6 ± 0.1 µM and 48 ± 3 (×107) µM, respectively. To evaluate a possible cytotoxicity effect an erythrocyte assay was performed and the obtained data were evaluated considering CdTe Quantum Dots (QDs) passivated with mercaptoacetic acid has experimental control. According to the resulting data RFL is not cytotoxic even when used in high concentrations, 660 mM. On the other hand QDs are quite different. Indeed it was proven that these heavy metal-based nanoparticles are responsible for 40% erytrocytes hemolysis in concentrations of 600 mM.


Subject(s)
Cadmium Compounds , Quantum Dots , Ferrous Compounds , Fluorescent Dyes , Iron , Quantum Dots/toxicity , Spectrometry, Fluorescence , Tellurium
4.
Small ; 16(28): e1907661, 2020 07.
Article in English | MEDLINE | ID: mdl-32462808

ABSTRACT

Non-Newtonian nanofluids present outstanding features in terms of energy transfer and conductivity with high application in numerous areas. In this work, non-Newtonian nanofluids based on carbon dots (Cdots) functionalized with ionic liquids (ILs) are developed. The nanofluids are produced using a simple, single-step method where the raw materials for the Cdots synthesis are glucose and waste biomass (chitin from crab shells). The use of ILs as both reaction media and functionalization molecules allows for the development of a new class of nanofluids, where the ILs on the Cdots surface represent the base-fluid. Here, the well-known benign IL 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and a novel home-made IL (1-tosylate-3-methyl-imidazolium triflate) [Tmi][Trif] are used. The nanofluids obtained from both substrates show, apart from high conductivity and viscosity, light absorption, and good wettability, an appealing thermal sensitivity behavior. This thermal sensitivity is preserved even when applied as thin films on glass slides and can be boosted using the surface plasmon resonance effect. The results reported demonstrate that the new Cdots/IL-based nanofluids constitute a versatile and cost-effective route for achieving high-performance thermosensitive non-Newtonian sustainable nanofluids with tremendous potential for the energy coatings sector and heat transfer film systems.


Subject(s)
Ionic Liquids , Carbon , Electric Conductivity , Imidazoles , Viscosity
5.
J Fluoresc ; 29(2): 343-346, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30887388

ABSTRACT

In this work, we report a new chemiluminescence system using bis-(2,4,6-trichlorophenyl) oxalate (TCPO) with hydrogen peroxide and luminol as fluorophore. The intense chemiluminescence reaction here described was fully investigated and it was determined that this fluorescent system has two strong light emissions at 440 and 490 nm, respectively. This new, user friendly, intense and striking light emission chemiluminescence system can be used as a very usefull tool for the design and construction of fluorescencent chemical sensors.

6.
Anal Chim Acta ; 735: 90-5, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22713921

ABSTRACT

We report within this paper the development of a fiber-optic based sensor for Hg(II) ions. Fluorescent carbon nanoparticles were synthesized by laser ablation and functionalized with PEG(200) and N-acetyl-L-cysteine so they can be anionic in nature. This characteristic facilitated their deposition by the layer-by-layer assembly method into thin alternating films along with a cationic polyelectrolyte, poly(ethyleneimine). Such films could be immobilized onto the tip of a glass optical fiber, allowing the construction of an optical fluorescence sensor. When immobilized on the fiber-optic tip, the resultant sensor was capable of selectively detecting sub-micromolar concentrations of Hg(II) with an increased sensitivity compared to carbon dot solutions. The fluorescence of the carbon dots was quenched by up to 44% by Hg(II) ions and interference from other metal ions was minimal.


Subject(s)
Carbon/chemistry , Cations, Divalent/analysis , Fluorescent Dyes/chemistry , Mercury/analysis , Nanoparticles/chemistry , Optical Fibers , Acetylcysteine/chemistry , Nanoparticles/ultrastructure , Sensitivity and Specificity , Spectrometry, Fluorescence/methods
7.
Environ Sci Technol ; 46(4): 2406-12, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22296411

ABSTRACT

In the last years, a rising trend of pollen allergies in urban areas has been attributed to atmospheric pollution. In this work, we investigated the effects of SO(2) and NO(2) on the protein content, allergenicity, and germination rate of Acer negundo pollen. A novel environmental chamber was assembled to exposure pollen samples with SO(2) or NO(2) at two different levels: just below and two times the atmospheric hour-limit value acceptable for human health protection in Europe. Results showed that protein content was lower in SO(2)-exposed pollen samples and slightly higher in NO(2)-exposed pollen compared to the control sample. No different polypeptide profiles were revealed by SDS-PAGE between exposed and nonexposed pollen, but the immunodetection assays indicated higher IgE recognition by all sera of sensitized patients to Acer negundo pollen extracts in all exposed samples in comparison to the nonexposed samples. A decrease in the germination rate of exposed in contrast to nonexposed pollen was verified, which was more pronounced for NO(2)-exposed samples. Our results indicated that in urban areas, concentrations of SO(2) and NO(2) below the limits established for human protection can indirectly aggravate pollen allergy on predisposed individuals and affect plant reproduction.


Subject(s)
Acer , Air Pollutants/toxicity , Nitrogen Dioxide/toxicity , Pollen/drug effects , Sulfur Dioxide/toxicity , Acer/physiology , Allergens/physiology , Germination/drug effects , Humans , Hypersensitivity, Immediate/blood , Hypersensitivity, Immediate/immunology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Plant Proteins/metabolism , Pollen/growth & development , Pollen/immunology
8.
Biosens Bioelectron ; 26(4): 1302-6, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20675118

ABSTRACT

An optical fiber sensor for Hg(II) in aqueous solution based on sol-gel immobilized carbon dots nanoparticles functionalized with PEG(200) and N-acetyl-L-cysteine is described. This sol-gel method generated a thin (about 750 nm), homogenous and smooth (roughness of 2.7±0.7 Å) film that immobilizes the carbon dots and allows reversible sensing of Hg(II) in aqueous solution. A fast (less than 10 s), reversible and stable (the fluorescence intensity measurements oscillate less than 1% after several calibration cycles) sensor system was obtained. The sensor allow the detection of submicron molar concentrations of Hg(II) in aqueous solution. The fluorescence intensity of the immobilized carbon dots is quenched by the presence of Hg(II) with a Stern-Volmer constant (pH=6.8) of 5.3×10(5) M(-1).


Subject(s)
Biosensing Techniques/methods , Carbon , Mercury/analysis , Optical Fibers , Quantum Dots , Biosensing Techniques/instrumentation , Fluorescence , Microscopy, Atomic Force , Microscopy, Electron, Scanning
9.
Sensors (Basel) ; 10(3): 1661-9, 2010.
Article in English | MEDLINE | ID: mdl-22294892

ABSTRACT

A new fluorescent sensor for nitric oxide (NO) is presented that is based on its reaction with a non fluorescent substance, reduced fluoresceinamine, producing the highly fluorescent fluoresceinamine. Using a portable homemade stabilized light source consisting of 450 nm LED and fiber optics to guide the light, the sensor responds linearly within seconds in the NO concentration range between about 10-750 µM with a limit of detection (LOD) of about 1 µM. The system generated precise intensity readings, with a relative standard deviation of less than 1%. The suitability of the sensor was assessed by monitoring the NO generated by either the nitrous acid decomposition reaction or from a NO-releasing compound. Using relatively high incubation times, the sensor also responds quantitatively to hydrogen peroxide and potassium superoxide, however, using transient signal measurements results in no interfering species.


Subject(s)
Biosensing Techniques/methods , Fluoresceins/chemistry , Nitric Oxide/analysis , Biosensing Techniques/instrumentation , Fiber Optic Technology/instrumentation , Fluorescent Dyes/chemistry , Hydrazines/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Linear Models , Reproducibility of Results , Superoxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...