Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(1): e8518, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35127032

ABSTRACT

Climate change and other anthropogenic activities have the potential to alter the dynamics of resource exchange in the mutualistic symbiosis between plants and mycorrhizal fungi, potentially altering its stability. Arbuscular mycorrhizal (AM) fungi, which interact with most plant species, are less cold-tolerant than other groups of fungi; warming might therefore lead to increased fungal-mediated nutrient transfers to plants, which could strengthen the mutualism. By stimulating photosynthesis, rising CO2 could reduce the carbon cost of supporting AM fungi, which may also strengthen the mutualism. Furthermore, rising temperature and CO2 could have stronger effects on the mutualism in wild plants than in domesticated plants because the process of domestication can reduce the dependence of plants on mycorrhizal fungi. We conducted a multi-level random effects meta-analysis of experiments that quantified the strength of the mutualism as plant growth response to AM fungal inoculation (i.e., mycorrhizal growth response) under contrasting temperature and CO2 treatments that spanned the Last Glacial Maximum (LGM) to those expected with future climate change. We tested predictions using a three-level mixed effects meta-regression model with temperature or CO2, domestication status and their interaction as moderators. Increases from subambient to ambient temperature stimulated mycorrhizal growth response only for wild, but not for domesticated plant species. An increase from ambient to superambient temperature stimulated mycorrhizal growth response in both wild and domesticated plants, but the overall temperature effect was not statistically significant. By contrast, increased CO2 concentration, either from subambient to ambient or ambient to super ambient levels, did not affect mycorrhizal growth response in wild or domesticated plants. These results suggest the mutualism between wild plants and AM fungi was likely strengthened as temperature rose from the past to the present and that forecasted warming due to climate change may have modest positive effects on the mutualistic responses of plants to AM fungi. Mutualistic benefits obtained by plants from AM fungi may not have been altered by atmospheric CO2 increases from the past to the present, nor are they likely to be affected by a forecasted CO2 increase. This meta-analysis also identified gaps in the literature. In particular, (i) a large majority of studies that examined temperature effects on the mutualism focus on domesticated species (>80% of all trials) and (ii) very few studies examine how rising temperature and CO2, or other anthropogenic effects, interact to influence the mutualism. Therefore, to predict the stability of the mycorrhizal mutualism in the Anthropocene, future work should prioritize wild plant species as study subjects and focus on identifying how climate change factors and other human activities interact to affect plant responses to AM fungi.

2.
Funct Plant Biol ; 47(2): 134-144, 2020 02.
Article in English | MEDLINE | ID: mdl-31902392

ABSTRACT

Low atmospheric CO2 conditions prevailed for most of the recent evolutionary history of plants. Such concentrations reduce plant growth compared with modern levels, but low-CO2 effects on plant performance may also be affected by nitrogen availability, since low leaf nitrogen decreases photosynthesis, and CO2 concentrations influence nitrogen assimilation. To investigate the influence of N availability on plant performance at low CO2, we grew Elymus canadensis at ambient (~400 µmol mol-1) and subambient (~180 µmol mol-1) CO2 levels, under four N-treatments: nitrate only; ammonium only; a full and a half mix of nitrate and ammonium. Growth at low CO2 decreased biomass in the full and nitrate treatments, but not in ammonium and half plants. Low CO2 effects on photosynthetic and maximum electron transport rates were influenced by fertilisation, with photosynthesis being most strongly impacted by low CO2 in full plants. Low CO2 reduced stomatal index in half plants, suggesting that the use of this indicator in paleo-inferences can be influenced by N availability. Under low CO2 concentrations, nitrate plants discriminated more against 15N whereas half plants discriminated less against 15N compared with the full treatment, suggesting that N availability should be considered when using N isotopes as paleo-indicators.


Subject(s)
Carbon Dioxide , Nitrogen , Nitrates , Photosynthesis , Plants
3.
Bone ; 110: 107-114, 2018 05.
Article in English | MEDLINE | ID: mdl-29414596

ABSTRACT

Enzymatic collagen cross-linking has been shown to play an important role in the macroscopic elastic and plastic deformation of bone across ages. However, its direct contribution to collagen fibril deformation is unknown. The aim of this study is to determine how covalent intermolecular connections from enzymatic collagen cross-links contribute to collagen fibril elastic and plastic deformation of adults and children's bone matrix. We used ex vivo data previously obtained from biochemical analysis of children and adults bone samples (n = 14; n = 8, respectively) to create 22 sample-specific computational models of cross-linked collagen fibrils. By simulating a tensile test for each fibril, we computed the modulus of elasticity (E), ultimate tensile and yield stress (σu and σy), and elastic, plastic and total work (We, Wp and Wtot) for each collagen fibril. We present a novel difference between children and adult bone in the deformation of the collagen phase and suggest a link between collagen fibril scale and macroscale for elastic behavior in children bone under the influence of immature enzymatic cross-links. We show a parametric linear correlation between We and immature enzymatic collagen cross-links at the collagen fibril scale in the children population that is similar to the one we found at the macroscale in our previous study. Finally, we suggest the key role of covalent intermolecular connections to stiffness parameters (e.g. elastic modulus and We) in children's collagen fibril and to toughness parameters in adult's collagen fibril, respectively.


Subject(s)
Bone Diseases/metabolism , Bone and Bones/metabolism , Collagen/chemistry , Elasticity , Adolescent , Aged , Bone Matrix/metabolism , Bone and Bones/pathology , Child , Computer Simulation , Elastic Modulus , Extracellular Matrix/metabolism , Humans , Middle Aged , Stress, Mechanical
4.
J Plant Physiol ; 205: 57-66, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27614786

ABSTRACT

The frequency and intensity of climatic extremes, such as heat waves, are predicted to increase globally, with severe implications for terrestrial carbon and water cycling. Temperatures may rise above critical thresholds that allow trees to function optimally, with unknown long-term consequences for forest ecosystems. In this context, we investigated how photosynthetic traits and the water balance in Douglas-fir are affected by exposure to three heat waves with temperatures about 12°C above ambient. Photosynthetic carboxylation efficiency (Vcmax) was mostly unaffected, but electron transport (Jmax) and photosynthetic rates under saturating light (Asat) were strongly influenced by the heat waves, with lagging limitations on photosynthesis still being observed six weeks after the last heat wave. We also observed lingering heat-induced inhibitions on transpiration, minimum stomatal conductance, and night-time stomatal conductance (gs-night). Results from the stomatal models used to calculate minimum stomatal conductance were similar to gs-night and indicated changes in leaf morphology, e.g. stomatal occlusions and alterations in epicuticular wax. Our results show Douglas-fir's ability to restrict water loss following heat stress, but at the price of reduced photosynthetic performance. Such limitations indicate potential long-term restrictions that heat waves can impose on tree development and functioning under extreme climatic conditions.


Subject(s)
Carbon/metabolism , Photosynthesis/physiology , Plant Transpiration/physiology , Pseudotsuga/physiology , Water/physiology , Hot Temperature , Plant Leaves/physiology , Plant Stomata/physiology , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...