Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Curr Biol ; 34(12): R576-R578, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889680

ABSTRACT

Aquatic apicomplexans called Corallicolida have been found in tropical and coral-reef settings, infecting many coral species. New data challenge this tropical distribution and expand the corallicolids' range well into the cold temperate. Surprisingly, the sister clade to corallicolids infects only one group of vertebrates - bony fishes.


Subject(s)
Anthozoa , Coral Reefs , Fishes , Symbiosis , Animals , Anthozoa/physiology , Fishes/physiology , Phylogeny
2.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38920106

ABSTRACT

Noradrenaline (NA) and serotonin (5-HT) induce nociception and antinociception. This antagonistic effect can be explained by the dose and type of activated receptors. We investigated the existence of synergism between the noradrenergic and serotonergic systems during peripheral antinociception. The paw pressure test was performed in mice that had increased sensitivity by intraplantar injection of prostaglandin E2 (PGE2). Noradrenaline (80 ng) administered intraplantarly induced an antinociceptive effect, that was reversed by the administration of selective antagonists of serotoninergic receptors 5-HT1B isamoltan, 5-HT1D BRL15572, 5-HT2A ketanserin, 5-HT3 ondansetron, but not by selective receptor antagonist 5-HT7 SB-269970. The administration of escitalopram, a serotonin reuptake inhibitor, potentiated the antinociceptive effect at a submaximal dose of NA. These results, indicate the existence of synergism between the noradrenergic and serotonergic systems in peripheral antinociception in mice.


Subject(s)
Norepinephrine , Receptors, Serotonin , Serotonin Antagonists , Serotonin , Animals , Mice , Norepinephrine/metabolism , Serotonin/metabolism , Serotonin Antagonists/pharmacology , Male , Receptors, Serotonin/metabolism , Dinoprostone/metabolism , Citalopram/pharmacology , Nociception/drug effects , Analgesics/pharmacology , Ondansetron/pharmacology , Ketanserin/pharmacology , Pain/drug therapy , Pain/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology
3.
Article in English | MEDLINE | ID: mdl-38753048

ABSTRACT

The present study aimed to evaluate the possible peripheral H2O2-induced antinociception and determine the involvement of opioidergic, cannabinoidergic and nitrergic systems, besides potassium channels in its antinociceptive effect. Prostaglandin E2 was used to induce hyperalgesia in male Swiss mice using the mechanical paw pressure test. H2O2 (0.1, 0.2, 0.3 µg/paw) promoted a dose-dependent antinociceptive effect that was not observed in contralateral paw. Female mice also showed antinociception in the model. The partial H2O2-induced antinociception was potentiated by the inhibitor of catalase enzyme, aminotriazole (40, 60, 80 µg/paw). The antinociception was not reversed by opioid and cannabinoid receptor antagonists naloxone, AM 251 and AM 630. The involvement of nitric oxide (NO) was observed by the reversal of H2O2-induced antinociception using the non-selective inhibitor of nitric oxide synthases L-NOarg and by inhibition of iNOS (L-NIL), eNOS (L-NIO) and nNOS (L-NPA). ODQ, a cGMP-forming enzyme selective inhibitor, also reversed the antinociception. The blockers of potassium channels voltage-gated (TEA), ATP-sensitive (glibenclamide), large (paxillin) and small (dequalinium) conductance calcium-activated were able to revert H2O2 antinociception. Our data suggest that H2O2 induced a peripheral antinociception in mice and the NO pathway and potassium channels (voltage-gated, ATP-sensitive, calcium-activated) are involved in this mechanism. However, the role of the opioid and cannabinoid systems was not evidenced.

4.
Pharmacology ; : 1-18, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643765

ABSTRACT

INTRODUCTION: Tissue injury results in the release of inflammatory mediators, including a cascade of algogenic substances, which contribute to the development of hyperalgesia. During this process, endogenous analgesic substances are peripherally released to counterbalance hyperalgesia. The present study aimed to investigate whether inflammatory mediators TNF-α, IL-1ß, CXCL1, norepinephrine (NE), and prostaglandin E2 (PGE2) may be involved in the deflagration of peripheral endogenous modulation of inflammatory pain by activation of the cholinergic system. METHODS: Male Swiss mice were subjected to paw withdrawal test. All the substances were injected via the intraplantar route. RESULTS: The main findings of this study were as follows: (1) carrageenan (Cg), TNF-α, CXCL-1, IL1-ß, NE, and PGE2 induced hyperalgesia; (2) the acetylcholinesterase enzyme inhibitor, neostigmine, reversed the hyperalgesia observed after Cg, TNF-α, CXCL-1, and IL1-ß injection; (3) the non-selective muscarinic receptor antagonist, atropine, and the selective muscarinic type 1 receptor (m1AChr) antagonist, telenzepine, potentiated the hyperalgesia induced by Cg and CXCL-1; (4) mecamylamine, a non-selective nicotinic receptor antagonist, potentiated the hyperalgesia induced by Cg, TNF-α, CXCL-1, and IL1-ß; (5) Cg, CXCL-1, and PGE2 increased the expression of the m1AChr and nicotinic receptor subunit α4protein. CONCLUSION: These results suggest that the cholinergic system may modulate the inflammatory pain induced by Cg, PGE2, TNF-α, CXCL-1, and IL1-ß.

5.
Nitric Oxide ; 146: 1-9, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38428514

ABSTRACT

BACKGROUND: Cannabidiol (CBD) is the second most abundant pharmacologically active component present in Cannabis sp. Unlike Δ-9-tetrahydrocannabinol (THC), it has no psychotomimetic effects and has recently received significant interest from the scientific community due to its potential to treat anxiety and epilepsy. CBD has excellent anti-inflammatory potential and can be used to treat some types of inflammatory and neuropathic pain. In this context, the present study aimed to evaluate the analgesic mechanism of cannabidiol administered systemically for the treatment of neuropathic pain and determine the endogenous mechanisms involved with this analgesia. METHODS: Neuropathic pain was induced by sciatic nerve constriction surgery, and the nociceptive threshold was measured using the paw compression test in mice. RESULTS: CBD produced dose-dependent antinociception after intraperitoneal injection. Selective inhibition of PI3Kγ dose-dependently reversed CBD-induced antinociception. Selective inhibition of nNOS enzymes reversed the antinociception induced by CBD, while selective inhibition of iNOS and eNOS did not alter this antinociception. However, the inhibition of cGMP production by guanylyl cyclase did not alter CBD-mediated antinociception, but selective blockade of ATP-sensitive K+ channels dose-dependently reversed CBD-induced antinociception. Inhibition of S-nitrosylation dose-dependently and completely reversed CBD-mediated antinociception. CONCLUSION: Cannabidiol has an antinociceptive effect when administered systemically and this effect is mediated by the activation of PI3Kγ as well as by nitric oxide and subsequent direct S-nitrosylation of KATP channels on peripheral nociceptors.


Subject(s)
Analgesics , Cannabidiol , Class Ib Phosphatidylinositol 3-Kinase , KATP Channels , Neuralgia , Nitric Oxide Synthase Type I , Nitric Oxide , Signal Transduction , Animals , Cannabidiol/pharmacology , KATP Channels/metabolism , Male , Signal Transduction/drug effects , Neuralgia/drug therapy , Neuralgia/metabolism , Mice , Nitric Oxide/metabolism , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Nitric Oxide Synthase Type I/metabolism , Analgesics/pharmacology , Analgesia
6.
Braz J Psychiatry ; 46: e20233343, 2024.
Article in English | MEDLINE | ID: mdl-38243805

ABSTRACT

OBJECTIVE: To evaluate the prevalence of attention-deficit/hyperactivity disorder (ADHD), comorbidity rates with disruptive behavior disorders and main negative outcomes in primary school students in Nampula, Mozambique. METHODS: We selected a random sample of 748 students for ADHD screening from a population of around 43,000 primary school students. The Swanson, Nolan, and Pelham Rating Scale version IV was applied to both parents and teachers. All students who screened positive (n=76) and a propensity score-matched random subset of students who screened negative (n=76) were assessed by a child psychiatrist. RESULTS: The prevalence of ADHD was estimated at 13.4% (95%CI 11.5-19.2), and 30.6% of those with ADHD presented comorbid disruptive behavior disorders. Students with ADHD (n=36) had significantly higher rates of both substance use (alcohol, marijuana) (p < 0.001), and school failures than controls (n=96; p < 0.001). Comorbidity between ADHD and disruptive behavior disorders increased the chance of substance use (p < 0.001). Secondary analyses with more restrictive ADHD diagnostic criteria revealed a lower prevalence rate (6.7%; 95%CI 5.2-12.9) with similar patterns of associated factors and negative outcomes. CONCLUSION: Our findings demonstrated that ADHD is a prevalent mental disorder in Mozambique, and it is associated with similar comorbid profiles, predisposing factors, and negative outcomes, as in other cultures.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Comorbidity , Students , Humans , Mozambique/epidemiology , Male , Female , Attention Deficit Disorder with Hyperactivity/epidemiology , Child , Prevalence , Students/statistics & numerical data , Schools/statistics & numerical data , Attention Deficit and Disruptive Behavior Disorders/epidemiology , Substance-Related Disorders/epidemiology , Psychiatric Status Rating Scales , Cross-Sectional Studies
7.
J Atten Disord ; 28(5): 583-588, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38084065

ABSTRACT

OBJECTIVE: To explore the ADHD diagnostic performance of a screening instrument, and which DSM-5 ADHD number of symptoms (criterion A) was best associated with impairment in a sample of students from 106 primary schools in Nampula, Mozambique. METHODS: A random sample of 748 students were assessed using SNAP-IV and 152 youths (76 positive and 76 negative screeners) were invited for psychiatric diagnostic confirmation. RESULTS: The performance of the screening instrument for predicting ADHD diagnosis was poor (all AUCs < 0.53). No other cut-off worked best in predicting impairment than the six symptoms cutoff suggested by DSM-5 for both inattention (AUC = 0.78; 95% CI [0.69, 0.86]) and hyperactivity/impulsivity (AUC = 0.75; 95% CI [0.67, 0.84]). CONCLUSION: Our findings highlight the adequacy of the DSM-5 ADHD criterion A in an African culture but indicate low diagnostic performance of a screening instruments only based in parent or teacher reports on symptoms to predict ADHD diagnosis.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Adolescent , Humans , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/psychology , Mozambique/epidemiology , Students , Parents/psychology , Schools
8.
J Virol ; 98(1): e0140423, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38088350

ABSTRACT

Coronaviruses are large RNA viruses that can infect and spread among humans and animals. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease 2019, has evolved since its first detection in December 2019. Deletions are a common occurrence in SARS-CoV-2 evolution, particularly in specific genomic sites, and may be associated with the emergence of highly competent lineages. While deletions typically have a negative impact on viral fitness, some persist and become fixed in viral populations, indicating that they may confer advantageous benefits for the virus's adaptive evolution. This work presents a literature review and data analysis on structural losses in the SARS-CoV-2 genome and the potential relevance of specific signatures for enhanced viral fitness and spread.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , COVID-19/virology , Genome, Viral , SARS-CoV-2/genetics , Evolution, Molecular
9.
Can J Physiol Pharmacol ; 102(3): 218-227, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37976474

ABSTRACT

Tramadol, an analgesic classified as an "atypical opioid", exhibits both opioid and non-opioid mechanisms of action. This study aimed to explore these mechanisms, specifically the opioid-, cannabinoid-, nitric oxide-, and potassium channel-based mechanisms, which contribute to the peripheral antinociception effect of tramadol, in an experimental rat model. The nociceptive threshold was determined using paw pressure withdrawal. To examine the mechanisms of action, several substances were administered intraplantarly: naloxone, a non-selective opioid antagonist (50 µg/paw); AM251 (80 µg/paw) and AM630 (100 µg/paw) as the selective antagonists for types 1 and 2 cannabinoid receptors, respectively; nitric oxide synthase inhibitors L-NOArg, L-NIO, L-NPA, and L-NIL (24 µg/paw); and the enzyme inhibitors of guanylatocyclase and phosphodiesterase of cGMP, ODQ, and zaprinast. Additionally, potassium channel blockers glibenclamide, tetraethylammonium, dequalinium, and paxillin were used. The results showed that opioid and cannabinoid receptor antagonists did not reverse tramadol's effects. L-NOarg, L-NIO, and L-NPA partially reversed antinociception, while ODQ completely reversed, and zaprinast enhanced tramadol's antinociception effect. Notably, glibenclamide blocked tramadol's antinociception in a dose-dependent manner. These findings suggest that tramadol's peripheral antinociception effect is likely mediated by the nitrergic pathway and sensitive ATP potassium channels, rather than the opioid and cannabinoid pathways.


Subject(s)
Cannabinoids , Tramadol , Rats , Animals , Analgesics, Opioid/pharmacology , Tramadol/pharmacology , Tramadol/therapeutic use , Nitric Oxide/metabolism , Rats, Wistar , Potassium Channels/metabolism , Hyperalgesia/metabolism , Nitroarginine , Receptors, Cannabinoid/metabolism , Glyburide , Analgesics/pharmacology , Analgesics/therapeutic use , Cyclic GMP/metabolism , Cannabinoids/adverse effects
10.
Article in English | LILACS-Express | LILACS | ID: biblio-1557210

ABSTRACT

Objective: To evaluate the prevalence of attention-deficit/hyperactivity disorder (ADHD), comorbidity rates with disruptive behavior disorders and main negative outcomes in primary school students in Nampula, Mozambique. Methods: We selected a random sample of 748 students for ADHD screening from a population of around 43,000 primary school students. The Swanson, Nolan, and Pelham Rating Scale version IV was applied to both parents and teachers. All students who screened positive (n=76) and a propensity score-matched random subset of students who screened negative (n=76) were assessed by a child psychiatrist. Results: The prevalence of ADHD was estimated at 13.4% (95%CI 11.5-19.2), and 30.6% of those with ADHD presented comorbid disruptive behavior disorders. Students with ADHD (n=36) had significantly higher rates of both substance use (alcohol, marijuana) (p < 0.001), and school failures than controls (n=96; p < 0.001). Comorbidity between ADHD and disruptive behavior disorders increased the chance of substance use (p < 0.001). Secondary analyses with more restrictive ADHD diagnostic criteria revealed a lower prevalence rate (6.7%; 95%CI 5.2-12.9) with similar patterns of associated factors and negative outcomes. Conclusion: Our findings demonstrated that ADHD is a prevalent mental disorder in Mozambique, and it is associated with similar comorbid profiles, predisposing factors, and negative outcomes, as in other cultures.

11.
Neurosci Lett ; 818: 137536, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37898181

ABSTRACT

It has already been shown that serotonin can release endocannabinoids at the spinal cord level, culminating in inhibition of the dorsal horn. At the peripheral level, cannabinoid receptors modulate primary afferent neurons by inhibiting calcium conductance and increasing potassium conductance. Studies have shown that after the activation of opioid receptors and cannabinoids, there is also the activation of the NO/cGMP/KATP pathway, inducing cellular hyperpolarization. In this study, we evaluated the participation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway in the peripheral antinociceptive effect of serotonin. The paw pressure test of mice was used in animals that had their sensitivity to pain increased due to an intraplantar injection of PGE2 (2 µg). Serotonin (250 ng/paw), administered locally in the right hind paw, induced antinociceptive effect. CB1 and CB2 cannabinoid receptors antagonists, AM251 (20, 40 and 80 µg) and AM630 (25, 50 and 100 µg), respectively, reversed the serotonin-induced antinociceptive effect. MAFP (0.5 µg), an inhibitor of the FAAH enzyme that degrades anandamide, and JZL184 (3.75 µg), an inhibitor of the enzyme MAGL that degrades 2-AG, as well as the VDM11 (2.5 µg) inhibitor of anandamide reuptake, potentiated the antinociceptive effect induced by a low dose (62. 5 ng) of serotonin. In the evaluation of the participation of the NO/cGMP/KATP pathway, the antinociceptive effect of serotonin was reversed by the administration of the non-selective inhibitor of NOS isoforms L-NOarg (12.5, 25 and 50 µg) and by the selective inhibitor for the neuronal isoform LNPA (24 µg), as well as by the soluble guanylate cyclase inhibitor ODQ (25, 50 and 100 µg). Among potassium channel blockers, only Glibenclamide (20, 40 and 80 µg), an ATP-sensitive potassium channel blocker, reversed the effect of serotonin. In addition, intraplantar administration of serotonin (250 ng) was shown to induce a significant increase in nitrite levels in the homogenate of the plantar surface of the paw of mice. Taken together, these data suggest that the antinociceptive effect of serotonin occurs by activation of the cannabinoid system with subsequent activation of the NO/cGMP/KATP pathway.


Subject(s)
Cannabinoids , Mice , Animals , Cannabinoids/metabolism , Analgesics/pharmacology , Serotonin/pharmacology , Potassium Channel Blockers , Receptors, Cannabinoid , Adenosine Triphosphate , Hyperalgesia/metabolism
12.
Biochem Biophys Res Commun ; 660: 58-64, 2023 06 11.
Article in English | MEDLINE | ID: mdl-37068389

ABSTRACT

Cannabidiol (CBD) is the most abundant non-psychoactive component found in plants of the genus Cannabis. Its analgesic effect for the treatment of neuropathy has been widely studied. However, little is known about its effects in the acute treatment when Cannabidiol is administered peripherally. Because of that, this research was aimed to evaluate the antinociceptive effects of the CBD when administered peripherally for the treatment of acute neuropathic pain and check the involvement of the 5-HT1A and the TRPV1 receptors in this event. Neuropathic pain was induced with the constriction of the sciatic nerve while the nociceptive threshold was measured using the pressure test of the mouse paw. The technique used proved to be efficient to induce neuropathy, and the CBD (5, 10 and 30 µg/paw) induced the antinociception in a dosage-dependent manner. The dosage used that induced a more potent effect (30 µg/paw), did not induce a systemic response, as demonstrated by both the motor coordination assessment test (RotaRod) and the antinociceptive effect restricted to the paw treated with CBD. The administration of NAN-190 (10 µg/paw), a selective 5-HT1A receptor antagonist, and SB-366791 (16 µg/paw), a selective TRPV1 antagonist, partially reversed the CBD-induced antinociception. The results of the research suggest that the CBD produces the peripheral antinociception during the acute treatment of the neuropathic pain and it partially involved the participation of the 5-HT1A and TRPV1 receptors.


Subject(s)
Cannabidiol , Neuralgia , Mice , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Serotonin , Neuralgia/drug therapy , Disease Models, Animal , Analgesics/pharmacology , Analgesics/therapeutic use , Receptor, Serotonin, 5-HT1A , TRPV Cation Channels
13.
Int J Health Geogr ; 22(1): 4, 2023 01 29.
Article in English | MEDLINE | ID: mdl-36710328

ABSTRACT

BACKGROUND: Self-Organizing Maps (SOM) are an unsupervised learning clustering and dimensionality reduction algorithm capable of mapping an initial complex high-dimensional data set into a low-dimensional domain, such as a two-dimensional grid of neurons. In the reduced space, the original complex patterns and their interactions can be better visualized, interpreted and understood. METHODS: We use SOM to simultaneously couple the spatial and temporal domains of the COVID-19 evolution in the 278 municipalities of mainland Portugal during the first year of the pandemic. Temporal 14-days cumulative incidence time series along with socio-economic and demographic indicators per municipality were analyzed with SOM to identify regions of the country with similar behavior and infer the possible common origins of the incidence evolution. RESULTS: The results show how neighbor municipalities tend to share a similar behavior of the disease, revealing the strong spatiotemporal relationship of the COVID-19 spreading beyond the administrative borders of each municipality. Additionally, we demonstrate how local socio-economic and demographic characteristics evolved as determinants of COVID-19 transmission, during the 1st wave school density per municipality was more relevant, where during 2nd wave jobs in the secondary sector and the deprivation score were more relevant. CONCLUSIONS: The results show that SOM can be an effective tool to analysing the spatiotemporal behavior of COVID-19 and synthetize the history of the disease in mainland Portugal during the period in analysis. While SOM have been applied to diverse scientific fields, the application of SOM to study the spatiotemporal evolution of COVID-19 is still limited. This work illustrates how SOM can be used to describe the spatiotemporal behavior of epidemic events. While the example shown herein uses 14-days cumulative incidence curves, the same analysis can be performed using other relevant data such as mortality data, vaccination rates or even infection rates of other disease of infectious nature.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Portugal/epidemiology , Algorithms , Pandemics , Cluster Analysis , Spatio-Temporal Analysis
14.
Appl Biochem Biotechnol ; 195(2): 753-771, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36166154

ABSTRACT

Surfactants are applied in several industrial processes when the modification of interface activity and the stability of colloidal systems are required. Lipopeptides are a class of microbial biosurfactants produced by species of the Bacillus genus. The present study aimed at assembling and analyzing the genome of a new Bacillus vallismortis strain, TIM68, that was shown to produce surfactant lipopeptides. The draft genome was also screened for common virulence factors and antibiotics resistance genes to investigate the strain biosafety. Comparative genomics analyses, i.e., synteny, average nucleotide identity (ANI), and pangenome, were also carried out using strain TIM68 and publicly available B. vallismortis complete and partial genomes. Three peptide synthetase operons were found in TIM68 genome, and they were surfactin A, mojavensin, and a novel plipastatin-like lipopeptide named vallisin. No virulence factors that render pathogenicity to the strain have been identified, but a region of prophage, that may contain unknown pathogenic factors, has been predicted. The pangenome of the species was characterized as closed, with 57% of genes integrating the core genome. The results obtained here on the genetic potential of TIM68 strain should contribute to its exploration in biotechnological applications.


Subject(s)
Bacillus , Lipopeptides , Lipopeptides/pharmacology , Surface-Active Agents/pharmacology , Surface-Active Agents/chemistry , Bacillus/genetics , Genomics
15.
Magnes Res ; 35(1): 1-10, 2022 01 01.
Article in English | MEDLINE | ID: mdl-36214549

ABSTRACT

In the present study, we investigated whether magnesium sulphate activates the L-arginine/NO/cGMP pathway and elicits peripheral antinociception. The male Swiss mice paw pressure test was performed with hyperalgesia induced by intraplantar injection of prostaglandin E2. All drugs were administered locally into the right hind paw of animals. Magnesium sulphate (20, 40, 80 and 160 µg/paw) induced an antinociceptive effect. The dose of 80 µg/paw elicited a local antinociceptive effect that was antagonized by the non-selective NOS inhibitor, L-NOArg, and by the selective neuronal NOS inhibitor, L-NPA. The inhibitors, L-NIO and L-NIL, selectively inhibited endothelial and inducible NOS, respectively, but were ineffective regarding peripheral magnesium sulphate injection. The soluble guanylyl cyclase inhibitor, ODQ, blocked the action of magnesium sulphate, and the cGMP-phosphodiesterase inhibitor, zaprinast, enhanced the antinociceptive effects of intermediate dose of magnesium sulphate. Our results suggest that magnesium sulphate stimulates the NO/cGMP pathway via neuronal NO synthase to induce peripheral antinociceptive effects.


Subject(s)
Dinoprostone , Magnesium Sulfate , Analgesics/pharmacology , Animals , Arginine/metabolism , Cyclic GMP/metabolism , Dinoprostone/adverse effects , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Magnesium Sulfate/pharmacology , Male , Mice , Nitric Oxide , Nitroarginine , Phosphodiesterase Inhibitors/pharmacology , Soluble Guanylyl Cyclase/antagonists & inhibitors
16.
Virus Res ; 321: 198908, 2022 11.
Article in English | MEDLINE | ID: mdl-36057416

ABSTRACT

In the Northeast of Brazil, Ceará was the second state most impacted by COVID-19 in number of cases and death rate. Despite that, the early dynamics of the pandemic in Ceará was not yet well understood due the low genomic surveillance of SARS-CoV-2 in 2020. In this study, we analyze the circulating lineages and the genomic variation of the virus in Ceará state. Thirty-four genomes were sequenced and combined with sequences available in GISAID database from March 2020 to June 2021 to compose the study dataset. The most prevalent lineages detected were B.1.1.33, in 2020, and P.1, in 2021. Other lineages were found, such as P.2, sublineages of P.1, B.1, B.1.1, B.1.1.28 and B.1.212. Analyzing the mutations, a total of 202 single-nucleotide polymorphisms (SNPs) were identified among the 34 genomes sequenced, of which 127 were missense, 74 synonymous, and one was a nonsense mutation. Among the missense mutations, C14408T, A23403G, T27299C, G28881A G28883C, and T29148C were the most prevalent within the dataset. Although SARS-CoV-2 sequencing data was limited in 2020, our results could provide insights to better understand the genetic diversity of the circulating lineages in Ceará.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Brazil/epidemiology , Codon, Nonsense , COVID-19/epidemiology , Genome, Viral , Genomics , Mutation , Pandemics , Phylogeny , SARS-CoV-2/genetics
17.
PLoS One ; 17(4): e0264279, 2022.
Article in English | MEDLINE | ID: mdl-35363779

ABSTRACT

Analyses of livestock genomes have been used to detect selection signatures, which are genomic regions associated with traits under selection leading to a change in allele frequency. The objective of the present study was to characterize selection signatures in Canchim composite beef cattle using cross-population analyses with the founder Nelore and Charolais breeds. High-density single nucleotide polymorphism genotypes were available on 395 Canchim representing the target population, along with genotypes from 809 Nelore and 897 Charolais animals representing the reference populations. Most of the selection signatures were co-located with genes whose functions agree with the expectations of the breeding programs; these genes have previously been reported to associate with meat quality, as well as reproductive traits. Identified genes were related to immunity, adaptation, morphology, as well as behavior, could give new perspectives for understanding the genetic architecture of Canchim. Some selection signatures identified genes that were recently introduced in Canchim, such as the loci related to the polled trait.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Genotype , Meat , Phenotype , Selection, Genetic
18.
Biochem Pharmacol ; 198: 114965, 2022 04.
Article in English | MEDLINE | ID: mdl-35182520

ABSTRACT

BACKGROUND: Bradykinin (BK) is an endogenous peptide involved in vascular permeability and inflammation. It has opposite effects (inducing hyperalgesia or antinociception) when administered directly in the central nervous system. The aim of this study was to evaluate whether BK may also present this dual effect when injected peripherally in a PGE2-induced nociceptive pain model, as well as to investigate the possible mechanisms of action involved in this event in mice. METHODS: Male Swiss and C57BL/6 knockout mice for B1 or B2 bradykinin receptors were submitted to a mechanical paw pressure test and hyperalgesia was induced by intraplantar prostaglandin E2 (2 µg/paw) injection. RESULTS: Bradykinin (20, 40 and 80 ng/paw) produced dose-dependent peripheral antinociception against PGE2-induced hyperalgesia. This effect was antagonized by bradyzide (8, 16 and 32 µg/paw), naloxone (12.5, 25 and 50 µg/paw), nor-binaltorphimine (50, 100 and 200 µg/paw) and AM251 (20, 40 and 80 µg/paw). Bestatin (400 µg/paw), MAFP (0.5 µg/paw) and VDM11 (2.5 µg/paw) potentiated the antinociception of a lower 20 ng BK dose. The knockout of B1 or B2 bradykinin receptors partially abolished the antinociceptive action of BK (80 ng/paw), bremazocine (1 µg/paw) and anandamide (40 ng/paw) when compared with wild-type animals, which show complete antinociception with the same dose of each drug. CONCLUSION: The present study is the first to demonstrate BK-induced antinociception in peripheral tissues against PGE2-induced nociception in mice and the involvement of κ-opioid and CB1 cannabinoid receptors in this effect.


Subject(s)
Bradykinin , Hyperalgesia , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Bradykinin/pharmacology , Dinoprostone , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Male , Mice , Mice, Inbred C57BL , Receptors, Bradykinin
19.
Eur J Pain ; 26(4): 825-834, 2022 04.
Article in English | MEDLINE | ID: mdl-35044019

ABSTRACT

BCKGROUND: Aripiprazole is an antipsychotic drug used to treat schizophrenia and bipolar disorder. Recently, its peripheral analgesic component was evaluated, however, the mechanism involved in this effect is not fully established. Therefore, the aim of the study was to obtain pharmacological evidence for the involvement of the nitric oxide system in the peripheral antinociceptive effect induced by aripiprazole. METHODS: The hyperalgesia was induced via intraplantar injection of prostaglandin E2 in mice and the nociceptive thresholds were evaluated using the paw pressure test. All drugs were injected locally into the right hind paw. RESULTS: The PI3K inhibitor (AS605240), but not rapamycin (mTOR kinase inhibitor), reversed the peripheral antinociceptive effect induced by Aripiprazole. Antinociception was antagonized by the non-selective inhibitor of the nitric oxide synthase (L-NOarg). The same response was observed using the selective iNOS, but not with the selective nNOS inhibitors. The selective guanylyl cyclase enzyme inhibitor (ODQ) and the non-selective potassium channel blocker tetraethylammonium were able to reverse the antinociceptive effect of aripiprazole. The same was seen using glibenclamide, an ATP-dependent K+ channel blocker. However, calcium-activated potassium channel blockers of small and high conductance, dequalinium chloride and paxilline, respectively, did not reverse this effect. The injection of cGMP-specific phosphodiesterase type 5 inhibitor zaprinast, potentiated the antinociceptive effect induced by a low dose of aripiprazole. CONCLUSION: The results provide evidence that aripiprazole induces peripheral antinociceptive effects via PI3K/NO/cGMP/KATP pathway activation.


Subject(s)
Analgesics , Antipsychotic Agents , Aripiprazole , Adenosine Triphosphate , Analgesics/therapeutic use , Animals , Antipsychotic Agents/pharmacology , Aripiprazole/pharmacology , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Cyclic GMP/metabolism , Mice , Nitric Oxide/metabolism
20.
Life Sci ; 293: 120279, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35032552

ABSTRACT

BACKGROUND: Curcumin is one of the compounds present in plants of the genus Curcuma sp., being very used not only as condiment but also with medicinal purposes. As an analgesic, papers highlight the efficacy of curcumin in the treatment of various types of pain. AIMS: In this study we evaluated the peripheral antinociceptive effect of curcumin and by which mechanisms this effect is induced. MAIN METHODS: The mice paw pressure test was used on animals which had increased pain sensitivity by intraplantar injection of carrageenan. All the drugs were administered in the right hind paw. KEY FINDINGS: Curcumin was administered to the right hind paw animals induced antinociceptive effect. Non -selective antagonist of opioid receptors naloxone reverted the antinociceptive effect induced by curcumin. Selective antagonists for µ, δ and κ opioid receptors clocinnamox, naltrindole and nor- binaltorphimine, respectively, reverted the antinociceptive effect induced by curcumin. Bestatin, enkephalinases inhibitor that degrade peptides opioids, did not change the nociceptive response. Selective antagonists for CB1 and CB2 cannabinoid receptors, AM251 and AM630, respectively, reversed the antinociceptive effect induced by curcumin. The MAFP inhibitor of the enzyme FAAH which breaks down anandamide, JZL184, enzyme inhibitor MAGL which breaks down the 2-AG, as well as the VDM11 anandamide reuptake inhibitor potentiated the antinociceptive effect of curcumin. SIGNIFICANCE: These results suggest that curcumin possibly peripheral antinociception induced by opioid and cannabinoid systems activation and possibly for endocannabinoids and opioids release.


Subject(s)
Analgesics/therapeutic use , Cannabinoid Receptor Agonists/therapeutic use , Curcumin/therapeutic use , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Receptors, Opioid/metabolism , Analgesics/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Arachidonic Acids/pharmacology , Arachidonic Acids/therapeutic use , Cannabinoid Receptor Agonists/pharmacology , Carrageenan/toxicity , Cinnamates/pharmacology , Curcumin/pharmacology , Dose-Response Relationship, Drug , Endocannabinoids/pharmacology , Endocannabinoids/therapeutic use , Hyperalgesia/chemically induced , Male , Mice , Morphine Derivatives/pharmacology , Narcotic Antagonists/pharmacology , Pain/chemically induced , Pain/drug therapy , Pain/metabolism , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...