Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 894315, 2022.
Article in English | MEDLINE | ID: mdl-35880177

ABSTRACT

A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αß T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αß T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell, gamma-delta , Antigen Presentation , Antigens, CD , Butyrophilins , Humans , Immunotherapy/methods , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Tumor Microenvironment
2.
Cancers (Basel) ; 11(5)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100936

ABSTRACT

Tumor antigens are responsible for initiating an immune response in cancer patients, and their identification may provide new biomarkers for cancer diagnosis and targets for immunotherapy. The general use of serum antibodies to identify tumor antigens has several drawbacks, including dilution, complex formation, and background reactivity. In this study, antibodies were generated from antibody-secreting cells (ASC) present in tumor-draining lymph nodes of 20 breast cancer patients (ASC-probes) and were used to screen breast cancer cell lines and protein microarrays. Half of the ASC-probes reacted strongly against extracts of the MCF-7 breast cancer cell line, but each with a distinct antigen recognition profile. Three of the positive ASC-probes reacted differentially with recombinant antigens on a microarray containing cancer-related proteins. The results of this study show that lymph node-derived ASC-probes provide a highly specific source of tumor-specific antibodies. Each breast cancer patient reacts with a different antibody profile which indicates that targeted immunotherapies may need to be personalized for individual patients. Focused microarrays in combination with ASC-probes may be useful in providing immune profiles and identifying tumor antigens of individual cancer patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...