Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 104(2): e3923, 2023 02.
Article in English | MEDLINE | ID: mdl-36428233

ABSTRACT

Plant recruitment interactions (i.e., what recruits under what) shape the composition, diversity, and structure of plant communities. Despite the huge body of knowledge on the mechanisms underlying recruitment interactions among species, we still know little about the structure of the recruitment networks emerging in ecological communities. Modeling and analyzing the community-level structure of plant recruitment interactions as a complex network can provide relevant information on ecological and evolutionary processes acting both at the species and ecosystem levels. We report a data set containing 143 plant recruitment networks in 23 countries across five continents, including temperate and tropical ecosystems. Each network identifies the species under which another species recruits. All networks report the number of recruits (i.e., individuals) per species. The data set includes >850,000 recruiting individuals involved in 118,411 paired interactions among 3318 vascular plant species across the globe. The cover of canopy species and open ground is also provided. Three sampling protocols were used: (1) The Recruitment Network (RN) protocol (106 networks) focuses on interactions among established plants ("canopy species") and plants in their early stages of recruitment ("recruit species"). A series of plots was delimited within a locality, and all the individuals recruiting and their canopy species were identified; (2) The paired Canopy-Open (pCO) protocol (26 networks) consists in locating a potential canopy plant and identifying recruiting individuals under the canopy and in a nearby open space of the same area; (3) The Georeferenced plot (GP) protocol (11 networks) consists in using information from georeferenced individual plants in large plots to infer canopy-recruit interactions. Some networks incorporate data for both herbs and woody species, whereas others focus exclusively on woody species. The location of each study site, geographical coordinates, country, locality, responsible author, sampling dates, sampling method, and life habits of both canopy and recruit species are provided. This database will allow researchers to test ecological, biogeographical, and evolutionary hypotheses related to plant recruitment interactions. There are no copyright restrictions on the data set; please cite this data paper when using these data in publications.


Subject(s)
Ecosystem , Tracheophyta , Humans , Plants , Biological Evolution
2.
Plants (Basel) ; 11(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36145746

ABSTRACT

Alien plant species are colonizing high-elevation areas along roadsides. In this study, we evaluated whether the distributions of alien plants in the central Chilean mountains have reached climatic equilibrium (i.e., upper distribution limits consistent with their climatic requirements). First, we evaluated whether the upper elevational limits of alien plants changed between 2008 and 2018 based on the Mountain Invasion Research Network (MIREN) database. Second, we compared the observed upper elevational limits with the upper limits predicted by each species' global climatic niche. On average across species, the upper elevation limit did not change between 2008 and 2018. However, most species maintained the same limit or shifted downward, while only 23% of the species shifted upwards. This lack of change does not mean that the species' distributions are in equilibrium with the climate, because the observed upper limit was lower than the limit predicted by the global niche model for 87% of species. Our results suggest that alien species in this study region may not only be climate-limited, but could also be limited by other local-scale factors, such as seed dispersal, intermittent disturbance rates, soil type and biotic interactions.

3.
Plants (Basel) ; 11(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35448793

ABSTRACT

To understand the factors that limit invasive expansion in alien species, it is critical to predict potential zones of colonization. Climatic niche can be an important way to predict the potential distribution of alien species. This correlation between niche and geographic distribution is called Hutchinson's duality. A combination of global and regional niches allows four invasive stages to be identified: quasi-equilibrium, local adaptation, colonization and sink stage. We studied the invasive stages of six alien leguminous species either in the niche or the geographical space. In five of the six species, a higher proportion of populations were in the quasi-equilibrium stage. Notably, Acacia species had the highest proportion of populations in local adaptation. This picture changed dramatically when we projected the climatic niche in the geographic space: in all species the colonization stage had the highest proportional projected area, ranging from 50 to 90%. Our results are consistent with Hutchinson's duality, which predicts that small areas in the niche space can be translated onto large areas of the geographic space. Although the colonization stage accounted for a low proportion of occurrences, in all species, the models predicted the largest areas for this stage. This study complements invasive stages, projecting them in geographic space.

4.
PeerJ ; 7: e7409, 2019.
Article in English | MEDLINE | ID: mdl-31565547

ABSTRACT

BACKGROUND AND AIMS: Global climate change is a major threat to biodiversity worldwide. Several arid areas might expand in the future, but it is not clear if this change would be positive or negative for arid-adapted lineages. Here, we explore whether climatic niche properties are involved in the configuration of climate refugia and thus in future species trends. METHODS: To estimate putative climate refugia and potential expansion areas, we used maximum entropy models and four climate-change models to generate current and future potential distributions of 142 plant species endemic to the Atacama and mediterranean Chilean ecosystems. We assessed the relationship between the similarity and breadth of thermal and precipitation niches with the size of climate refugia and areas of potential expansions. KEY RESULTS: We found a positive relationship between breadth and similarity for thermal niche with the size of climate refugia, but only niche similarity of the thermal niche was positively related with the size of expansion areas. Although all lineages would reduce their distributions in the future, few species are predicted to be at risk of extinction in their current distribution, and all of them presented potential expansion areas. CONCLUSION: Species with a broad niche and niche dissimilarity will have larger refugia, and species with niche dissimilarity will have larger expansion areas. In addition, our prediction for arid lineages shows that these species will be moderately affected by climate change.

5.
Am J Bot ; 102(9): 1506-20, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26373974

ABSTRACT

PREMISE OF THE STUDY: Species of the endemic Chilean cactus genus Copiapoa have cylindrical or (sub)globose stems that are solitary or form (large) clusters and typically yellow flowers. Many species are threatened with extinction. Despite being icons of the Atacama Desert and well loved by cactus enthusiasts, the evolution and diversity of Copiapoa has not yet been studied using a molecular approach. METHODS: Sequence data of three plastid DNA markers (rpl32-trnL, trnH-psbA, ycf1) of 39 Copiapoa taxa were analyzed using maximum likelihood and Bayesian inference approaches. Species distributions were modeled based on geo-referenced localities and climatic data. Evolution of character states of four characters (root morphology, stem branching, stem shape, and stem diameter) as well as ancestral areas were reconstructed using a Bayesian and maximum likelihood framework, respectively. KEY RESULTS: Clades of species are revealed. Though 32 morphologically defined species can be recognized, genetic diversity between some species and infraspecific taxa is too low to delimit their boundaries using plastid DNA markers. Recovered relationships are often supported by morphological and biogeographical patterns. The origin of Copiapoa likely lies between southern Peru and the extreme north of Chile. The Copiapó Valley limited colonization between two biogeographical areas. CONCLUSIONS: Copiapoa is here defined to include 32 species and five heterotypic subspecies. Thirty species are classified into four sections and two subsections, while two species remain unplaced. A better understanding of evolution and diversity of Copiapoa will allow allocating conservation resources to the most threatened lineages and focusing conservation action on real biodiversity.


Subject(s)
Biological Evolution , Cactaceae/physiology , Cactaceae/classification , Cactaceae/genetics , Chile , DNA, Plant/genetics , DNA, Plant/metabolism , Molecular Sequence Data , Phylogeny , Plant Dispersal , Plastids/genetics , Sequence Analysis, DNA
6.
PLoS One ; 9(10): e111468, 2014.
Article in English | MEDLINE | ID: mdl-25343481

ABSTRACT

Lantana camara, a native plant from tropical America, is considered one of the most harmful invasive species worldwide. Several studies have identified potentially invasible areas under scenarios of global change, on the assumption that niche is conserved during the invasion process. Recent studies, however, suggest that many invasive plants do not conserve their niches. Using Principal Components Analyses (PCA), we tested the hypothesis of niche conservatism for L. camara by comparing its native niche in South America with its expressed niche in Africa, Australia and India. Using MaxEnt, the estimated niche for the native region was projected onto each invaded region to generate potential distributions there. Our results demonstrate that while L. camara occupied subsets of its original native niche in Africa and Australia, in India its niche shifted significantly. There, 34% of the occurrences were detected in warmer habitats nonexistent in its native range. The estimated niche for India was also projected onto Africa and Australia to identify other vulnerable areas predicted from the observed niche shift detected in India. As a result, new potentially invasible areas were identified in central Africa and southern Australia. Our findings do not support the hypothesis of niche conservatism for the invasion of L. camara. The mechanisms that allow this species to expand its niche need to be investigated in order to improve our capacity to predict long-term geographic changes in the face of global climatic changes.


Subject(s)
Climate , Geography , Introduced Species , Lantana/physiology , Area Under Curve , Biodiversity , Models, Biological , Species Specificity , Temperature
7.
PLoS One ; 9(8): e105025, 2014.
Article in English | MEDLINE | ID: mdl-25137175

ABSTRACT

Species climate requirements are useful for predicting their geographic distribution. It is often assumed that the niche requirements for invasive plants are conserved during invasion, especially when the invaded regions share similar climate conditions. California and central Chile have a remarkable degree of convergence in their vegetation structure, and a similar Mediterranean climate. Such similarities make these geographic areas an interesting natural experiment for testing climatic niche dynamics and the equilibrium of invasive species in a new environment. We tested to see if the climatic niche of Eschscholzia californica is conserved in the invaded range (central Chile), and we assessed whether the invasion process has reached a biogeographical equilibrium, i.e., occupy all the suitable geographic locations that have suitable conditions under native niche requirements. We compared the climatic niche in the native and invaded ranges as well as the projected potential geographic distribution in the invaded range. In order to compare climatic niches, we conducted a Principal Component Analysis (PCA) and Species Distribution Models (SDMs), to estimate E. californica's potential geographic distribution. We also used SDMs to predict altitudinal distribution limits in central Chile. Our results indicated that the climatic niche occupied by E. californica in the invaded range is firmly conserved, occupying a subset of the native climatic niche but leaving a substantial fraction of it unfilled. Comparisons of projected SDMs for central Chile indicate a similarity, yet the projection from native range predicted a larger geographic distribution in central Chile compared to the prediction of the model constructed for central Chile. The projected niche occupancy profile from California predicted a higher mean elevation than that projected from central Chile. We concluded that the invasion process of E. californica in central Chile is consistent with climatic niche conservatism but there is potential for further expansion in Chile.


Subject(s)
Eschscholzia , Introduced Species , Altitude , Chile , Climate , Conservation of Natural Resources , Models, Biological , Plant Dispersal
SELECTION OF CITATIONS
SEARCH DETAIL
...