Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 101(1): 80-8, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17030392

ABSTRACT

The contribution of decameric vanadate species to vanadate toxic effects in cardiac muscle was studied following an intravenous administration of a decavanadate solution (1mM total vanadium) in Sparus aurata. Although decameric vanadate is unstable in the assay medium, it decomposes with a half-life time of 16 allowing studying its effects not only in vitro but also in vivo. After 1, 6 and 12h upon decavanadate administration the increase of vanadium in blood plasma, red blood cells and in cardiac mitochondria and cytosol is not affected in comparison to the administration of a metavanadate solution containing labile oxovanadates. Cardiac tissue lipid peroxidation increases up to 20%, 1, 6 and 12h after metavanadate administration, whilst for decavanadate no effects were observed except 1h after treatment (+20%). Metavanadate administration clearly differs from decavanadate by enhancing, 12h after exposure, mitochondrial superoxide dismutase (SOD) activity (+115%) and not affecting catalase (CAT) activity whereas decavanadate increases SOD activity by 20% and decreases (-55%) mitochondrial CAT activity. At early times of exposure, 1 and 6h, the only effect observed upon decavanadate administration was the increase by 20% of SOD activity. In conclusion, decavanadate has a different response pattern of lipid peroxidation and oxidative stress markers, in spite of the same vanadium distribution in cardiac cells observed after decavanadate and metavanadate administration. It is suggested that once formed decameric vanadate species has a different reactivity than vanadate, thus, pointing out that the differential contribution of vanadium oligomers should be taken into account to rationalize in vivo vanadate toxicity.


Subject(s)
Biomarkers , Lipid Peroxidation , Oxidative Stress , Vanadates/pharmacokinetics , Animals , Catalase/metabolism , Magnetic Resonance Spectroscopy , Sea Bream , Subcellular Fractions/metabolism , Superoxide Dismutase/metabolism , Vanadates/administration & dosage
2.
Biochem Biophys Res Commun ; 268(3): 745-9, 2000 Feb 24.
Article in English | MEDLINE | ID: mdl-10679276

ABSTRACT

Aldehyde oxidoreductase (AOR) activity has been found in different sulfate reducing organisms (Moura, J. J. G., and Barata, B. A. S. (1994) in Methods in Enzymology (Peck, H. D., Jr., and LeGall, J., Eds.), Vol. 243, Chap. 4. Academic Press; Romão, M. J., Knäblein, J., Huber, R., and Moura, J. J. G. (1997) Prog. Biophys. Mol. Biol. 68, 121-144). The enzyme was purified to homogeneity from extracts of Desulfovibrio desulfuricans (Dd) ATCC 27774, a sulfate reducer that can use sulfate or nitrate as terminal respiratory substrates. The protein (AORDd) is described as a homodimer (monomer, circa 100 kDa), contains a Mo-MCD pterin, 2 x [2Fe-2S] clusters, and lacks a flavin group. Visible and EPR spectroscopies indicate a close similarity with the AOR purified from Desulfovibrio gigas (Dg) (Barata, B. A. S., LeGall, J., and Moura, J. J. G. (1993) Biochemistry 32, 11559-11568). Activity and substrate specificity for different aldehydes were determined. EPR studies were performed in native and reduced states of the enzyme and after treatment with ethylene glycol and dithiothreitol. The AORDd was crystallized using ammonium sulfate as precipitant and the crystals belong to the space group P6(1)22, with unit cell dimensions a = b = 156.4 and c = 177.1 A. These crystals diffract to beyond 2.5 A resolution and a full data set was measured on a rotating anode generator. The data were used to solve the structure by Patterson Search methods, using the model of AORDg.


Subject(s)
Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/isolation & purification , Coenzymes , Desulfovibrio/enzymology , Aldehyde Oxidoreductases/metabolism , Crystallography, X-Ray , Dimerization , Electron Spin Resonance Spectroscopy , Metalloproteins/chemistry , Molecular Weight , Molybdenum Cofactors , Oxidation-Reduction , Protein Structure, Quaternary , Pteridines/chemistry , Spectrophotometry , Substrate Specificity
3.
Biochem Biophys Res Commun ; 239(3): 816-22, 1997 Oct 29.
Article in English | MEDLINE | ID: mdl-9367852

ABSTRACT

Some sulfate reducing bacteria can induce nitrate reductase when grown on nitrate containing media being involved in dissimilatory reduction of nitrate, an important step of the nitrogen cycle. Previously, it was reported the purification of the first soluble nitrate reductase from a sulfate-reducing bacteria Desulfovibrio desulfuricans ATCC 27774 (S.A. Bursakov, M.-Y. Liu, W.J. Payne, J. LeGall, I. Moura, and J.J.G. Moura (1995) Anaerobe 1, 55-60). The present work provides further information about this monomeric periplasmic nitrate reductase (Dd NAP). It has a molecular mass of 74 kDa, 18.6 U specific activity, KM (nitrate) = 32 microM and a pHopt in the range 8-9.5. Dd NAP has peculiar properties relatively to ionic strength and cation/anion activity responses. It is shown that monovalent cations (potassium and sodium) stimulate NAP activity and divalent (magnesium and calcium) inhibited it. Sulfate anion also acts as an activator in KPB buffer. NAP native form is protected by phosphate anion from cyanide inactivation. In the presence of phosphate, cyanide even stimulates NAP activity (up to 15 mM). This effect was used in the purification procedure to differentiate between nitrate and nitrite reductase activities, since the later is effectively blocked by cyanide. Ferricyanide has an inhibitory effect at concentrations higher than 1 mM. The N-terminal amino acid sequence has a cysteine motive C-X2-C-X3-C that is most probably involved in the coordination of the [4Fe-4S] center detected by EPR spectroscopy. The active site of the enzyme consists in a molybdopterin, which is capable for the activation of apo-nit-1 nitrate reductase of Neurospora crassa. The oxidized product of the pterin cofactor obtained by acidic hidrolysis of native NAP with sulfuric acid was identified by HPLC chromatography and characterized as a molybdopterin guanine dinucleotide (MGD).


Subject(s)
Desulfovibrio/enzymology , Nitrate Reductases/metabolism , Periplasm/enzymology , Alkanesulfonic Acids , Amino Acid Sequence , Buffers , Coloring Agents , Drug Stability , Enzyme Activation/drug effects , Ethanolamines , Ferricyanides/pharmacology , Molecular Sequence Data , Nitrate Reductase , Nitrate Reductases/antagonists & inhibitors , Nitrate Reductases/chemistry , Nitrates/metabolism , Osmolar Concentration , Potassium Cyanide/pharmacology , Viologens/metabolism
4.
Biochem Biophys Res Commun ; 230(1): 30-4, 1997 Jan 03.
Article in English | MEDLINE | ID: mdl-9020054

ABSTRACT

The formate dehydrogenase (FDH) isolated from cells of Methylobacterium sp. RXM grown on molybdenum-containing mineral medium using methanol as carbon source, was partially purified (at least 90% pure as revealed by SDS-PAGE). The enzyme is unstable under oxygen and all the purification steps were conducted under strict anaerobic conditions. The molecular mass is 75 kDa (gel exclusion 300 kDa). The enzyme was characterized in terms of the kinetic parameters towards different substrates and electron acceptors, pH and temperature dependence and the effect of a wide range of compounds in the enzymatic activity. The EPR spectra of the dithionite reduced sample show, at low temperature (below 20 K), two rhombic EPR signals due to two distinct [Fe-S] centres (centre I at g-values 2.023, 1.951 and 1.933, and centre II at g-values 2.054 and 1.913). At high temperature (around 100 K) another rhombic EPR signal is optimally observed at g-values 2.002, 1.987 and 1.959 and attributed to the molybdenum site. The EPR signals assigned to the iron-sulfur centres show a strong analogy with the aldehyde oxido-reductase from Desulfovibrio gigas known to contain a Mo-pterin and two [2Fe-2S] centres and whose crystallographic structure was recently resolved.


Subject(s)
Formate Dehydrogenases/chemistry , Formate Dehydrogenases/isolation & purification , Gram-Negative Aerobic Bacteria/enzymology , Molybdenum/analysis , Chromatography, Ion Exchange , Cytoplasm/enzymology , Electron Spin Resonance Spectroscopy , Formate Dehydrogenases/metabolism , Hydrogen-Ion Concentration , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/isolation & purification , Iron-Sulfur Proteins/metabolism , Kinetics , Molecular Weight , Spectrophotometry , Thermodynamics
5.
Biol Signals ; 5(5): 275-82, 1996.
Article in English | MEDLINE | ID: mdl-8937691

ABSTRACT

The conversion of adrenaline to aminochromes by the human erythrocyte plasma membranes at pH 9.5 was shown to be a complex reaction that proceeded at least by two distinct phases. The first one, corresponding to the formation of adrenochrome, is catalyzed in the presence of the membranes, suggesting the involvement of an enzyme-mediated process. Active oxygen species were identified as intermediates during this phase. Oxygen radical scavengers (catalase and superoxide dismutase) suggested H2O2 and O2- involvement. Adrenochrome formation was stimulated by NADH indicating the participation of another enzyme (NADH dehydrogenase) which is known to be present in the human erythrocyte plasma membrane. The second phase, corresponding to the disappearance of adrenochrome, is also stimulated by NADH and inhibited in the presence of the membranes. In this reaction, adrenochrome is converted to aminochromes via adrenochrome semiquinone. The formation of radical species is demonstrated by EPR spectroscopy. The results led to the proposal of a mechanism for the formation of adrenochrome and other oxidation products from adrenaline.


Subject(s)
Epinephrine/metabolism , Erythrocyte Membrane/metabolism , Indoles/metabolism , Benzoquinones/metabolism , Humans , Oxidation-Reduction , Spectrophotometry
6.
Proc Natl Acad Sci U S A ; 93(17): 8846-51, 1996 Aug 20.
Article in English | MEDLINE | ID: mdl-8799115

ABSTRACT

The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Bacterial Proteins/chemistry , Desulfovibrio/enzymology , Molybdenum/chemistry , Xanthine Oxidase/chemistry , Aldehyde Oxidoreductases/chemistry , Aldehyde Oxidoreductases/classification , Bacterial Proteins/metabolism , Crystallography, X-Ray , Cytosine Nucleotides/chemistry , Models, Molecular , Molybdenum/metabolism , Oxidation-Reduction , Pterins/chemistry , Xanthine Oxidase/classification , Xanthine Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...