Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Haemost ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950604

ABSTRACT

OBJECTIVE: Hereditary aortic diseases (hADs) increase the risk of aortic dissections and ruptures. Recently, we have established an objective approach to measure the rupture force of the murine aorta, thereby explaining the outcomes of clinical studies and assessing the added value of approved drugs in vascular Ehlers-Danlos syndrome (vEDS). Here, we applied our approach to six additional mouse hAD models. MATERIAL AND METHODS: We used two mouse models (Fbn1C1041G and Fbn1mgR ) of Marfan syndrome (MFS) as well as one smooth-muscle-cell-specific knockout (SMKO) of Efemp2 and three CRISPR/Cas9-engineered knock-in models (Ltbp1, Mfap4, and Timp1). One of the two MFS models was subjected to 4-week-long losartan treatment. Per mouse, three rings of the thoracic aorta were prepared, mounted on a tissue puller, and uniaxially stretched until rupture. RESULTS: The aortic rupture force of the SMKO and both MFS models was significantly lower compared with wild-type mice but in both MFS models higher than in mice modeling vEDS. In contrast, the Ltbp1, Mfap4, and Timp1 knock-in models presented no impaired aortic integrity. As expected, losartan treatment reduced aneurysm formation but surprisingly had no impact on the aortic rupture force of our MFS mice. CONCLUSION: Our read-out system can characterize the aortic biomechanical integrity of mice modeling not only vEDS but also related hADs, allowing the aortic-rupture-force-focused comparison of mouse models. Furthermore, aneurysm progression alone may not be a sufficient read-out for aortic rupture, as antihypertensive drugs reducing aortic dilatation might not strengthen the weakened aortic wall. Our results may enable identification of improved medical therapies of hADs.

2.
Cardiovasc Res ; 116(2): 457-465, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31056650

ABSTRACT

AIMS: Antihypertensive drugs are included in the medical therapy of vascular Ehlers-Danlos syndrome (vEDS). The ß-blocker celiprolol has been suggested to prevent arterial damage in vEDS, but the underlying mechanism remains unclear. It is also unknown whether the widely used angiotensin II receptor type 1 antagonist losartan has a therapeutic effect in vEDS. Here, we evaluated the impact of celiprolol and losartan on the biomechanical integrity of the vEDS thoracic aorta. METHODS AND RESULTS: We established a new approach to measure the maximum tensile force at rupture of uniaxially stretched murine thoracic aortic rings. In a vEDS model, which we (re-)characterized here at molecular level, heterozygous mice showed a significant reduction in the rupture force compared to wild-type mice, reflecting the increased mortality due to aortic rupture. For the assessment of treatment effects, heterozygous mice at 4 weeks of age underwent a 4-week treatment with celiprolol, losartan, and, as a proof-of-concept drug, the matrix metalloproteinase inhibitor doxycycline. Compared to age- and sex-matched untreated heterozygous mice, treatment with doxycycline or celiprolol resulted in a significant increase of rupture force, whereas no significant change was detected upon losartan treatment. CONCLUSIONS: In a vEDS model, celiprolol or doxycycline, but not losartan, can improve the biomechanical integrity of the aortic wall, thereby potentially reducing the risk of dissection and rupture. As doxycycline is a broad-spectrum antibiotic with considerable side effects, celiprolol may be more suitable for a long-term therapy and thus rather indicated for the medication of patients with vEDS.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Aorta, Thoracic/drug effects , Aortic Aneurysm, Thoracic/prevention & control , Aortic Dissection/prevention & control , Aortic Rupture/prevention & control , Celiprolol/pharmacology , Ehlers-Danlos Syndrome/drug therapy , Losartan/pharmacology , Vascular Remodeling/drug effects , Aortic Dissection/pathology , Aortic Dissection/physiopathology , Animals , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/physiopathology , Aortic Rupture/pathology , Aortic Rupture/physiopathology , Collagen Type III/genetics , Doxycycline/pharmacology , Ehlers-Danlos Syndrome/pathology , Ehlers-Danlos Syndrome/physiopathology , Heterozygote , Matrix Metalloproteinase Inhibitors/pharmacology , Mice, Inbred C57BL , Mutation , Proof of Concept Study , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...