Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
2.
Bioorg Med Chem Lett ; 22(5): 1953-7, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22325946

ABSTRACT

The discovery and SAR of a series of potent renin inhibitors possessing a novel 3,4-diarylpiperidine scaffold are described herein. The resulting compound 38 exhibit low nanomolar plasma renin IC(50), had a clean CYP 3A4 profile and displayed micromolar affinity for the hERG channel. Furthermore, it was found to be efficacious in the double transgenic rat hypertension model and show good to moderate oral bioavailability in two animal species.


Subject(s)
Antihypertensive Agents/chemistry , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Piperidines/chemistry , Piperidines/therapeutic use , Renin/antagonists & inhibitors , Animals , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/pharmacology , Biological Availability , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inhibitors , Dogs , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Piperidines/pharmacokinetics , Piperidines/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Renin/metabolism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 21(18): 5547-51, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21784634

ABSTRACT

An oral bioavailability issue encountered during the course of lead optimization in the renin program is described herein. The low F(po) of pyridone analogs was shown to be caused by a combination of poor passive permeability and gut efflux transport. Substitution of pyridone ring for a more lipophilic moiety (logD>1.7) had minimal effect on rMdr1a transport but led to increased passive permeability (P(app)>10 × 10(-6) cm/s), which contributed to overwhelm gut transporters and increase rat F(po). LogD and in vitro passive permeability determination were found to be key in guiding SAR and improve oral exposure of renin inhibitors.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Cell Membrane Permeability/drug effects , Piperidines/pharmacology , Renin/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/deficiency , ATP Binding Cassette Transporter, Subfamily B/metabolism , Administration, Oral , Animals , Biological Availability , Biological Transport/drug effects , Dose-Response Relationship, Drug , Mice , Mice, Knockout , Molecular Structure , Piperidines/administration & dosage , Piperidines/chemistry , Rats , Renin/metabolism , Stereoisomerism , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 21(13): 3976-81, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21641209

ABSTRACT

The design and optimization of a novel series of renin inhibitor is described herein. Strategically, by committing the necessary resources to the development of synthetic sequences and scaffolds that were most amenable for late stage structural diversification, even as the focus of the SAR campaign moved from one end of the molecule to another, highly potent renin inhibitors could be rapidly identified and profiled.


Subject(s)
Alcohols/chemical synthesis , Antihypertensive Agents/chemical synthesis , Antihypertensive Agents/therapeutic use , Drug Design , Hypertension/drug therapy , Piperidines/chemical synthesis , Renin/antagonists & inhibitors , Alcohols/chemistry , Alcohols/therapeutic use , Animals , Antihypertensive Agents/chemistry , Molecular Structure , Piperidines/chemistry , Piperidines/therapeutic use , Rats , Renin/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 21(13): 3970-5, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21621998

ABSTRACT

An SAR campaign aimed at decreasing the overall lipophilicity of renin inhibitors such as 1 is described herein. It was found that replacement of the northern appendage in 1 with an N-methyl pyridone and subsequent re-optimization of the benzyl amide handle afforded compounds with in vitro and in vivo profiles suitable for further profiling. An unexpected CV toxicity in dogs observed with compound 20 led to the employment of a time and resource sparing rodent model for in vivo screening of key compounds. This culminated in the identification of compound 31 as an optimized renin inhibitor.


Subject(s)
Drug Design , Hypertension/drug therapy , Piperidines/chemical synthesis , Pyridones/chemical synthesis , Renin/antagonists & inhibitors , Animals , Dogs , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Piperidines/chemistry , Piperidines/therapeutic use , Pyridones/chemistry , Pyridones/therapeutic use , Rats , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 21(8): 2430-6, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21429746

ABSTRACT

The incorporation of a carboxylic acid within in a series of 3-amido-4-aryl substituted piperidines (represented by general structure 32) led to the discovery of potent, zwitterionic, renin inhibitors with improved off-target profiles (CYP3A4 time-dependent inhibition and hERG affinity) relative to analogous non-zwitterionic inhibitors of the past (i.e., 3). Strategies to address the oral absorption of these zwitterions are also discussed within.


Subject(s)
Protease Inhibitors/chemical synthesis , Renin/antagonists & inhibitors , Administration, Oral , Animals , Catalytic Domain , Computer Simulation , Dogs , Drug Evaluation, Preclinical , Humans , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacokinetics , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacokinetics , Rats , Rats, Sprague-Dawley , Renin/metabolism , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 20(22): 6387-93, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20933411

ABSTRACT

The structure-activity relationship of a novel series of 8-biarylnaphthyridinones acting as type 4 phosphodiesterase (PDE4) inhibitors for the treatment of long-term memory loss and mild cognitive impairment is described herein. The manuscript describes a new paradigm for the development of PDE4 inhibitor targeting CNS indications. This effort led to the discovery of the clinical candidate MK-0952, an intrinsically potent inhibitor (IC(50)=0.6 nM) displaying limited whole blood activity (IC(50)=555 nM). Supporting in vivo results in two preclinical efficacy tests and one test assessing adverse effects are also reported. The comparative profiles of MK-0952 and two other Merck compounds are described to validate the proposed hypothesis.


Subject(s)
Cognition Disorders/drug therapy , Cyclic Nucleotide Phosphodiesterases, Type 4/drug effects , Cyclopropanes/pharmacology , Heterocyclic Compounds, 2-Ring/pharmacology , Memory, Long-Term/drug effects , Phosphodiesterase Inhibitors/pharmacology , Animals , Cyclopropanes/chemistry , Cyclopropanes/therapeutic use , Dogs , Female , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/therapeutic use , Humans , Macaca mulatta , Male , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/therapeutic use , Rats , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 20(17): 5074-9, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20673718

ABSTRACT

Time-dependent inhibitors of CYPs have the potential to perpetrate drug-drug interactions in the clinical setting. After finding that several leading compounds in a novel series of substituted amino propanamide renin inhibitors inactivated CYP3A4 in an NADPH-dependent and time-dependent manner, a search to identify the cause of this liability was initiated. Extensive SAR revealed that the amide bridge present in compound 1 as a possible culprit. Through the installation of a metabolic soft spot distal to this moiety, potent renin inhibitors with improved CYP profile were identified.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors , Enzyme Inhibitors/pharmacology , Propionates/chemistry , Renin/antagonists & inhibitors , Amides/chemistry , Cytochrome P-450 CYP3A , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Inhibitory Concentration 50 , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology
9.
Bioorg Med Chem Lett ; 20(18): 5502-5, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20709547

ABSTRACT

The SAR study of a series of 6-aryloxymethyl-8-aryl substituted quinolines is described. Optimization of the series led to the discovery of compound 26b, a highly potent (IC50=0.6 nM) and selective PDE4D inhibitor with a 75-fold selectivity over the A, B, and C subtypes and over 18,000-fold selectivity against other PDE family members. Rat pharmacokinetics and tissue distribution are also summarized.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Animals , Asthma/drug therapy , Humans , Inhibitory Concentration 50 , Male , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacokinetics , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship
10.
Bioorg Med Chem Lett ; 20(19): 5822-6, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20728350

ABSTRACT

The discovery and SAR of a series of potent renin inhibitors possessing a novel biaryl scaffold are described herein. Molecular modeling revealed that the cyclopropylamide spacer present in 1 can be replaced by a simple, substituted aromatic ring such as a toluene in 2. The resulting compounds exhibit subnanomolar renin IC(50) and good oral bioavailability in rats.


Subject(s)
Bibenzyls/chemistry , Enzyme Inhibitors/chemistry , Renin/antagonists & inhibitors , Administration, Oral , Amides/chemistry , Animals , Bibenzyls/chemical synthesis , Bibenzyls/pharmacokinetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Rats , Renin/metabolism , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 20(7): 2204-9, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20206513

ABSTRACT

The discovery and SAR of a new series of substituted amino propanamide renin inhibitors are herein described. This work has led to the preparation of compounds with in vitro and in vivo profiles suitable for further development. Specifically, challenges pertaining to oral bioavailability, covalent binding and time-dependent CYP 3A4 inhibition were overcome thereby culminating in the identification of compound 50 as an optimized renin inhibitor with good efficacy in the hypertensive double-transgenic rat model.


Subject(s)
Antihypertensive Agents/chemistry , Antihypertensive Agents/therapeutic use , Hypertension/drug therapy , Renin/antagonists & inhibitors , Renin/metabolism , Animals , Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Crystallography, X-Ray , Dogs , Humans , Models, Molecular , Protein Binding , Rats , Rats, Sprague-Dawley , Renin/chemistry , Structure-Activity Relationship
12.
Bioorg Med Chem Lett ; 19(17): 5266-9, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19640717

ABSTRACT

Substituted 8-arylquinoline analogs bearing alkyl-linked side chain were identified as potent inhibitors of type 4 phophodiesterase. These compounds address the potential liabilities of the clinical candidate L-454560. The pharmacokinetic profile of the best analogs and the in vivo efficacy in an ovalbumin-induced bronchoconstriction assay in conscious guinea pigs are reported.


Subject(s)
Anti-Inflammatory Agents/chemistry , Phosphodiesterase 4 Inhibitors , Phosphodiesterase Inhibitors/chemistry , Quinolines/chemistry , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/pharmacokinetics , Aryl Hydrocarbon Hydroxylases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cytochrome P-450 CYP2C9 , Guinea Pigs , Humans , Leukocytes, Mononuclear/metabolism , Ovalbumin/pharmacology , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacokinetics , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Rats , Saimiri , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 18(4): 1407-12, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18207397

ABSTRACT

The structure-activity relationship of a novel series of 8-biarylquinolines acting as type 4 phosphodiesterase (PDE4) inhibitors is described herein. Prototypical compounds from this series are potent and non-selective inhibitors of the four distinct PDE4 (IC(50)<10 nM) isozymes (A-D). In a human whole blood in vitro assay, they inhibit (IC(50)<0.5 microM) the LPS-induced release of the cytokine TNF-alpha. Optimized inhibitors were evaluated in vivo for efficacy in an ovalbumin-induced bronchoconstriction model in conscious guinea pigs. Their propensity to produce an emetic response was evaluated by performing pharmacokinetic studies in squirrel monkeys. This work has led to the identification of several compounds with excellent in vitro and in vivo profiles, including a good therapeutic window of efficacy over emesis.


Subject(s)
Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacology , Phosphodiesterase 4 Inhibitors , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Animals , Biological Availability , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/pharmacokinetics , Drug Design , Guinea Pigs , Humans , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacokinetics , Pyridines/chemical synthesis , Pyridines/chemistry , Pyridines/pharmacokinetics , Pyridines/pharmacology , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Stereoisomerism , Structure-Activity Relationship
15.
J Mass Spectrom ; 41(6): 771-80, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16705670

ABSTRACT

L-454,560 is a potent phosphodiesterase 4 (PDE4) inhibitor which was identified as a development candidate for the treatment of asthma and chronic obstructive pulmonary disease (COPD). As part of the discovery of this compound, interspecies in vitro metabolism data was generated using liver microsomes and hepatocytes in order to understand the metabolic fate of the compound. In microsomes, metabolism of the 3-methyl-1,2,4-oxadiazole ring was the predominant pathway observed, including ring cleavage. In rat hepatocytes, hydroxylation of the methyl group on the oxadiazole ring and double-bond isomerization were the most abundant metabolites observed. No major species differences were found in terms of microsomal metabolite profiles. The use of LC with UV and MS detection is highlighted, as well as information from tandem mass spectrometry and NMR.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Hepatocytes/metabolism , Microsomes, Liver/metabolism , Quinolines/pharmacokinetics , Animals , Chromatography, Liquid/methods , Cyclic Nucleotide Phosphodiesterases, Type 4 , Dogs , Humans , Macaca mulatta , Mass Spectrometry/methods , Mice , Rats , Saimiri , Species Specificity , Spectrophotometry, Ultraviolet/methods
16.
Bioorg Med Chem Lett ; 16(10): 2608-12, 2006 May 15.
Article in English | MEDLINE | ID: mdl-16516471

ABSTRACT

Potent inhibitors of the human PDE IV enzyme are described. Substituted 8-arylquinoline analogs bearing nitrogen-linked side chain were identified as potent inhibitors based on the SAR described herein. The pharmacokinetic profile of the best analog and the in vivo efficacy in an ovalbumin-induced bronchoconstriction assay in conscious guinea pigs are reported.


Subject(s)
Nitrogen/chemistry , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Animals , Biological Availability , Half-Life , Phosphodiesterase Inhibitors/pharmacokinetics , Quinolines/pharmacokinetics , Rats , Saimiri
18.
Bioorg Med Chem Lett ; 15(23): 5241-6, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16168647

ABSTRACT

The discovery and SAR of a new series of substituted 8-arylquinoline PDE4 inhibitors are herein described. This work has led to the identification of several compounds with excellent in vitro and in vivo profiles, including a good therapeutic window of emesis to efficacy in several animal models. Typical optimized compounds from this series are potent inhibitors of PDE4 (IC(50)<1nM) and also of LPS-induced TNF-alpha release in human whole blood (IC(50)<0.5microM). The same compounds are potent inhibitors of ovalbumin-induced bronchoconstriction in conscious guinea pigs (EC(50)<0.1mg/kg ip) but require a dose of about 10mg/kg po in the squirrel monkey to produce an emetic response. From this series of compounds, 23a (L-454,560) was identified as an optimized compound.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Phosphodiesterase Inhibitors/chemistry , Phosphodiesterase Inhibitors/pharmacology , Quinolines/chemistry , Quinolines/pharmacology , Animals , Bronchoconstriction/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 4 , Guinea Pigs , Humans , Inhibitory Concentration 50 , Phosphodiesterase Inhibitors/toxicity , Quinolines/toxicity , Rats , Saimiri , Sheep , Structure-Activity Relationship , Vomiting/chemically induced
20.
J Pharmacol Exp Ther ; 314(2): 846-54, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15901792

ABSTRACT

The diseases of cystic fibrosis, chronic obstructive pulmonary disease (COPD), and chronic bronchitis are characterized by mucus-congested and inflamed airways. Anti-inflammatory agents that can simultaneously restore or enhance mucociliary clearance through cystic fibrosis transmembrane conductance regulator (CFTR) activation may represent new therapeutics in their treatment. Herein, we report the activation of CFTR-mediated chloride secretion by phosphodiesterase (PDE) 4 inhibitors in T84 monolayer using (125)I anion as tracer. In the absence of forskolin, the iodide secretion was insensitive to PDE4 inhibitor L-826,141 [4-[2-(3,4-bis-difluoromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-ethyl]-3-methylpyridine-1-oxide], roflumilast, or to PDE3 inhibitor trequinsin. However, these inhibitors potently augmented iodide secretion after forskolin stimulation, with efficacy coupled to the activation states of adenylyl cyclase. The iodide secretion from PDE3 or PDE4 inhibition was characterized at first by a prolonged efflux duration, followed by progressively elevated peak efflux rates at higher inhibitor concentrations. Paralleled with an increased phosphor-cAMP response element-binding protein formation, the CFTR activation dissociated from a global cAMP elevation and was blocked by H89 [N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide]. 2-(4-Fluorophenoxy)-N-[(1S)-1-(4-methoxyphenyl)ethyl]nicotinamide, a stereoselective PDE4D inhibitor, augmented iodide efflux more efficiently than its less potent (R)-isomer. The peak efflux from maximal PDE4 and PDE3 inhibition matched that from full adenylyl cyclase activation. These data suggest that PDE3 and PDE4 (mainly PDE4D) form the major cAMP diffusion barrier in T84 cells to ensure a compartmentalized CFTR signaling. Together with their potent anti-inflammatory properties, the potentially enhanced airway mucociliary clearance from CFTR activation may have contributed to the efficacy of PDE4 inhibitors in COPD and asthmatic patients. PDE4 inhibitors may represent new opportunities to combat cystic fibrosis and other respiratory diseases in future.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Phosphodiesterase Inhibitors/pharmacology , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Adenylyl Cyclases/metabolism , Aminopyridines/pharmacology , Benzamides/pharmacology , Biotransformation/drug effects , Blotting, Western , Cell Line , Chlorides/metabolism , Colforsin/pharmacology , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3 , Cyclic Nucleotide Phosphodiesterases, Type 4 , Cyclopropanes/pharmacology , Enzyme Activation/drug effects , Humans , Iodine Radioisotopes , Isoquinolines/pharmacology , Sulfonamides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...